《比的意义》教学设计

时间:2024-06-23 17:54:57 教学设计 我要投稿

《比的意义》教学设计

  作为一名默默奉献的教育工作者,通常需要准备好一份教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么你有了解过教学设计吗?下面是小编精心整理的《比的意义》教学设计,希望对大家有所帮助。

《比的意义》教学设计

  《比的意义》教学设计 篇1

  教学目标:

  1、使学生理解分数的意义及分子分母的含义。

  2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。

  3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。

  教学重点:通过具体的操作活动,使学生理解分数的意义,发展学生的数感。

  教学难点:在比较辨析中体会部分与整体的关系,感受分数的相对性。

  教学过程:

  一、导入

  出示:数

  1、你们都学过哪些数?(整数、小数、分数)

  把你知道的分数知识说出来,让我们大家分享一下好吗?

  预设:(1)分数有分母、分子、分数线

  (2)把一个苹果平均分成两份,取一份就是1/2

  (3)分数的比较大小

  2、关于分数,你还想知道什么呢?

  预设:(1)分数加减法

  (2)约分、通分

  看来大家的求知欲很强,今天咱们就继续研究分数

  二、实践操作,研究新知

  (一)认识单位1

  出示:1/4

  1、你能举例说明1/4的含义吗?把它画下来

  2、学生活动,教师巡视

  先完成的同学再举举其他的例子

  3、汇报交流

  学生边汇报,教师边板书

  预设:

  (1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4

  板书:平均分

  强调:是谁的1/4

  (2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4

  (3)我把一米平均分成四份,这样的一份就是一米的1/4

  (4)我把四根小棒平均分成四份,这样的一份就是(这四根小棒的)1/4

  这一份是谁的1/4啊?(这四根小棒的)

  也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4

  你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4

  上面这些图中,把谁看做单位1?分别说一说

  4、你还能把多少图形平均分,也能用1/4表示其中的一份?

  (5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4

  这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4

  (6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4

  5、请同学们观察我们操作的结果,有什么相同点和不同点?

  相同:都是平均分成四份,表示其中的一份,也就是意义相同

  不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分

  分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根

  6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示

  7、每一份出现数量不同是因为(单位1不同)

  8、如果把他们平均分成四份,表示其中的两份呢?(2/4)

  你能说说它表示的含义吗?三份呢?四份呢?

  1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式

  (1)、把12个图形平均分一分,你可以得到哪些分数?

  (2)、要求:以小组为单位操作,思考有几种分法。

  根据操作过程填写记录单。

  说清每个分数的含义。

  把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。

  记录单:

  方法一

  方法二

  方法三

  方法四

  画图表示

  用分数表示

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  与分数对应的个数

  2、小组汇报,根据汇报情况,学生质疑、解答。

  结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?

  2、教师:这样的2份、3份是单位1的几分之几?是几个图形

  那也就说既可以平均分成若干份,又可以表示其中的一份或几份

  3、归纳概念:

  刚才大家开动脑筋,得出了这么多的分数,你能结合刚才的.学习活动,结合表格试着总结出什么叫分数吗?

  师在学生回答的基础上概括小结:把单位1平均分成若干份,它的一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)

  三、简单应用,生活中解释意义

  1、分数不仅在我们的课堂中,而且还出现在我们的生活中。

  中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。

  学生自主阅读,结合具体情境说说每个分数的意义。

  谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)

  2、用分数表示下面个图中的涂色部分。

  3、判断并说明理由。

  四、总结

  通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?

  《比的意义》教学设计 篇2

  (一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。

  1、想一想,我们怎样求两人的速度?

  2、2、学生计算答案,汇报填表。

  3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

  4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

  (二)、理解比的意义

  1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比

  两个数相除)

  2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

  (三)、认识“比值”、及与“比”的区别:

  1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?

  我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?

  2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?

  3、你能说出例1中的各个比的比值分别是多少吗?

  4、讨论:同学们觉得比与比值的区别在哪里?

  (比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

  (四)、“试一试”

  1、完成“试一试”:(学生独立完成,指名板演)

  2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

  (五)、比、除法和分数的关系

  1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的'什么吗?比的后项可以是0吗?(根据学生的汇报填表)

  相互关系区别

  比前项比号(:)后项比值

  除法

  分数

  2、比的后项为什么不能是0?

  四、巩固练习

  1、完成“练一练”的1、2、3小题。

  2、判断题。

  (1)3/4只能读作四分之三。()

  (2)比的后项不能是零。()

  (3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()

  3、完成练习十三的第3、4题。

  4、糖水的甜度

  (1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)

  你知道哪一杯水更甜吗?为什么?

  (2)(出示第三杯糖水,标出糖4克,水100克。)

  你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

  (3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

  5、知识介绍:

  同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”

  五、总结:

  今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

  六、布置作业:P72练习十三的1、2、3、5

  板书设计

  相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3

  果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2

  2比3记作2∶3分数形式

  《比的意义》教学设计 篇3

  教学目标:

  1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概 念

  教学过程:

  活动一:

  同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

  课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

  在学生的.回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

  活动二;

  (一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

  同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

  让学生举出生活中这样的例子。

  (二)探究非同类量的比

  课件出示书中的第二个红点问题。

  让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

  再让学生举出生活中这样地例子。

  活动三:

  仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

  通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

  课件出示问题:

  ⑴、比的读、写法?比都有哪些表示形式?

  ⑵、比的各部分名称?如何求比值?

  ⑶、比和除法、分数有哪些联系?

  ⑷、比的后项能不能是0?为什么?

  引导学生起来交流,在学生交流的基础上有针对性的板书。

  活动四:

  1、填一填。

  ⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。

  ⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。

  活动五;

  学生谈收获。

  《比的意义》教学设计 篇4

  【学习内容】:

  人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

  【学习目标】:

  1、结合具体情境,通过计算,能说出比例的意义。

  2、能应用比例的意义判断两个比能否构成比例。

  3、通过观察、比较、小组讨论说出比和比例的区别。

  【学习重点】:

  比例的意义,应用比例的意义判断两个比是否能构成比例。

  【学习难点】:

  应用比例的意义判断两个比是否能构成比例。

  教学过程

  一、复习旧知、导入新课

  同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。

  二、比较分析,探究新知

  1、出示情景图,说一说各幅图的情景。

  第一幅:xx前的升国旗仪式

  第二幅:学校每周一的升旗仪式

  第三幅:教室前面的红旗

  第四幅:谈判桌上的红旗

  (对学生进行爱国主义教育)

  问题:1:你能说一说这四幅图中国旗的相同点和不同点吗?

  2:你们想知道这些长和宽是多少吗?

  出示国旗的长宽数据。

  3:请同学们观察、计算一下,国旗的长和宽的比值是多少?

  3板书:2.4:1.6=2360:40=2

  4、探求共性,概括意义

  师:比较一下,你什么发现?

  师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

  生:用等号(师把左右两个中间板书=)

  师:同学们现在用了等号表示出这样一个式子,(板书:式子)谁来说一说这个式子就表示了什么?

  生:表示相等的两个比。

  生:表示两个比值相等的比

  (师板书:比相等)

  师:像这样表示两个比相等的式子叫做比例。板书

  同桌互相说说

  这个就是今天我们学习的——比例的意义(板书:比例的'意义)

  三、合作探究,进一步理解比例。

  1、探索组成比例的条件

  师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?

  (教师再强调:一定是比值相等的两个比才能组成比例。)

  2、寻找比例

  师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶10 60∶40=5∶ )

  3、介绍比例的第二种表示方法

  师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书: )

  4、区分比和比例

  师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)

  从形式上区分:比由两个数组成;比例由四个数组成。

  从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

  四、根据意义,判断比例

  师:刚刚我们认识了新的式子比例,那要是让你来判断两个比是不是能组成比例,你会怎么办?

  生:看比值是不是相等

  1、完成“做一做”。

  下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)

  2、试一试,5:8 与1:5 这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

  3、反馈:(1)你给5:8找的朋友是( ),组成的比例是( ),向大家介绍你用了什么方法找到的。

  4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

  5、处理做一做第二题。

  6、处理练习六第一题。

  四、目标检测

  1、判断:

  (1)、有两个比组成的式子叫做比例

  ( )

  (2)、如果两个比可以组成比例,那么这 两个比的比值一定相等。

  ( )

  (3)、比值相等的两个比可以组成比例

  ( )

  (4)、0.1:0.3与2:6能组成比例

  ( )

  (5)、组成比例的两个比一定是最简的 整数比

  ( )

  2、写出比值是5的两个比,并组成比例。

  3、练习六第二题。

  4、拓展练习:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?

  五、总结

  师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

  六、板书设计:

  比例的意义

  操场上的国旗:2.4∶1.6=1.5

  教室里的国旗:60∶40=1.5

  2.4∶1.6=60∶40 也可以写成

  表示两个比相等的式子就叫做比例。

  《比的意义》教学设计 篇5

  教学目标:

  1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

  2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

  3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

  学情分析:

  小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。

  教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

  教学难点:理解小数的意义。

  教学过程:

  一、创设情境,了解小数的产生。

  1、回忆一下:我们学过什么长度单位?

  2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

  3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

  4、揭题。(板书:小数的意义)

  二、自主探讨,理解小数的意义。

  (一)研究一位小数

  1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

  这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

  2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

  3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。

  4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

  (二)研究两位小数(自助探究)

  1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

  2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

  3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

  4、说发现。

  (三)研究三位小数。(自主探究)

  1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

  2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

  3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

  4、说发现。

  (四)推导

  1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

  1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

  刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的'意义。

  三、合作交流,探讨小数的计数单位。

  1、填一填。

  (1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

  填一填,说说你是怎么想的。

  像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

  同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

  请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

  2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

  0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

  四、巩固练习。

  课件出示练习。

  五、总结。

  这节课你有什么收获?

  《比的意义》教学设计 篇6

  教学目标:

  1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

  2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

  3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

  教学重点、难点:

  理解小数的意义,会正确读写小数。

  教学过程:

  一、导入

  同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的.知识,让我们一起来认识小数的意义和读写法。(板书课题)

  二、回顾旧知,铺垫新知

  1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

  (2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。

  你能用角或分做单位说出下面物品的价钱吗?

  2.旧知铺垫

  以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

  (1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

  用小数表示就是0.3元。

  3.初步认识两位小数。

  (1)5分和48分都是以什么为单位的?

  如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)

  (2)5分用分数表示是多少元呢?48分呢?学生讨论

  (3)学生汇报,教师根据学生回答完成板书。

  (4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

  百分之五元可以写成小数0.05元。

  (5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

  百分之四十八元可以写成小数0.48元。

  三、探究新知

  1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?

  2.进一步理解两位小数的意义。

  下面,我们请尺子来帮助我们认识小数。

  (1)1厘米用分数表示是几分之几米?你是怎么想的?

  (2)百分之一米用小数表示是多少?

  (3)把4厘米和12厘米改写成以“米”作单位的分数和小数。

  (4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?

  3.自主探究三位小数的意义。

  (1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

  (3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)

  (4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

  (5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?

  4.

  总结归纳小数的意义。

  (1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

  (2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

  从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?

  谁能连起来说说。

  总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

  (3)同桌互相说一说。

  四、巩固拓深认知

  1.试一试:

  学生独立完成,并交流汇报。

  (提示:7角3分可以看作多少分,这样改写就比较容易了。)

  2.数形结合(练一练)。

  请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

  学生自己填,再汇报。说说每题你是怎么想的?

  观察这些图形,你还能想到哪些分数和小数?

  判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

  3.练习四1

  我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

  五、课堂小结

  这节课你学了什么?

  《比的意义》教学设计 篇7

  教学内容:

  人教版五年级数学下册第60~62页《分数的意义》。

  教学目标:

  1、使学生知道分数的产生过程,理解分数的意义,能对具体情景中分数的意义作出解释,能有条理地运用分数知识对生活中的问题进行分析和思考。掌握分数单位的特点。

  2、使学生感受到数学知识是在人类的生产和生活实践中产生的,培养对数学的兴趣,树立学习数学的信心。

  教学重点:

  1、分数意义的概括。

  2、理解单位“1 ”。

  教学难点:

  突破一个整体的教学。

  教学过程:

  课前小活动:老师在黑板上写一个自然数1,问:这是什么数字?他可以表示什么意思?这节课我们要学习与自然数1有联系的内容,但它又不完全相同。现在就请和老师一起走进课堂吧。

  一、直接导入,唤醒旧知

  问:到目前为止,我们已经学习了哪些数字?(整数、小数和分数),然后让学生举出分数,老师选一个分数(1/3)写在黑板上,让学生读出这个分数,问:关于分数1/3,你了解了什么?(分数的组成---分子、分母和分数线,分子分母、分数线分别表示什么?分数1/3又表示什么?)

  师总结:三年级的时候我们已经初步认识了分数,今天我们来进一步研究分数,从中揭示课题和板书课题。

  二、师:昨天老师布置了同学们去预习,那分数如1/

  3、6/16??是怎样产生的呢?(分物、测量、计算等得不到整数时,就产生了分数)

  三、自主探究,交流建构

  (一)、以旧知引入新知。

  1、教学一个物体的四分之一

  (1)师:出示一个圆片(平均分成四份,涂了一份),让学生说出1/4,且说出是谁的1/4。然后小组合作学习:各小组拿出自己试先准备的学具(一根绳子、一张长方形纸、一个苹果等)表示出1/4,老师巡视,个别辅导。最后老师请各组的代表拿出自己所创造的分数四分之一,说一说你是怎样创造出四分之一的?引导学生说清分别是谁的四分之一。

  (2)汇报反馈,进入探究。把一个物体平均分成4份,表示出它的四分之一的。

  让学生说出自己的创造。老师有意识的找把一个物体平均分成4份,表示其中的一份可以用四分之一表示的。如一个圆形,一个长方形、一根绳子,一个苹果,根据学生的回答,引导对比找出共同点,师根据学生的回答随即板书:一个物体,平均分成4份,表示其中的一份,用四分之一表示。

  2、教学多个物体的四分之一

  (1)师:同学们已经学会找出一个物体的四分之一了,那么你们能找多个物体四分之一吗?现在请小组合作讨论,如何找出多个物体(四根香蕉、八个苹果、十二个小三角形)的四分之一?(小组在用学具进行分一分,涂一涂),老师巡视指导,接着让各小组的代表展示自己组的成果,不足的其它组成员作补充。

  (2)汇报反馈,进入探究。

  展示学生的作品:让学生上讲台对着作品分别说:四根香蕉、八个苹果、十二个小三角形中一根香蕉涂色的、二个苹果涂色的和三个小三角形涂色的就是它们的四分之一。(多抽几个小组,达到相互补充,从而达到突破难点)师:一根香蕉涂色的是谁的四分之一?两个苹果涂色是谁的四分之一?三个涂色的小三角形又是谁的四分之一?使学生明白这一根涂色的香蕉是这四根香蕉的四分之一。两个涂色苹果是八个苹果的四分之一,三个涂色的小三角形又是十二个小三角形的四分之一。师强调,原来你把这四根香蕉、八个苹果、十二个小三角形看做了一个整体,这个整体是由几份组成的,每一份就是这个整体的四分之一。怎样才能让人一眼看出你这四个三角形是一个整体呢?引导学生说出在每个整体外面画一个集合圈。怎样让人一眼看出是四份呢?引导学生用虚线分开。这样以来别人就能一眼看出你是把谁看做一个整体,平均分成4分,涂色的一份就是这个整体个四分之一。让学生用完整的一句语说说自己平均分的四根香蕉、八个苹果和十二个小三角形如何得到四分之一的复述一遍,为分数的概念学习做好铺垫。

  (3)进一步理解表示多个物体的四分之一

  师:出示教具:12个苹果图片,旁边分别有1/

  2、1/

  3、1/

  4、1/6和1/12,让学生任选一个分数,在图中涂色表示出来(小组合作完成),然后让学生代表回答,主要让学生说出这么涂的根据(以谁为整体,几个苹个为一份)

  师:看来一个物体能看做一个整体平均分、许多物体组成的一个整体也能平均分,一个物体许多物体组成的整体,都能用自然数1表示,我们还给它起了个共同的名字,叫做什么?这里的1与上面我们说的1意义完全相同吗?请看课本61页中间一句话。(一个物体或许多物体组成的整体,都可以用自然数1来表示,通常叫做单位“1”),共同的名字叫什么?思考这里的1为什么加上了引号,使学生明白,这里的'1不仅能表示一个物体,还能表示多个物体组成的一个整体,所以加了双引号表示特定的含义。

  (4)、理解分数的意义

  ①在练习纸上想办法创造出你想表示的分数。学生汇报作品。学生一边展示给大家看一边说,说完把作品贴在黑板上。如把14个梯形平均分成2份,其中的1份表示单位1的二分之一;6个汽球平均分成3份,其中的2份表示单位1的三分之二??

  ②对比这几幅图,有什么共同点和不同点?小组交流。学生汇报交流的结果。师总结像这样平均分成2、3、4份??都可以说成平均分成若干份,若干份可以是比1大的任何一个自然数。这样的一份或几份可以用分数表示,引出分数的意义。让学生看书61页,什么叫分数。让学生读一读,找出重点词,画出着重符号,读一读,读出重点词,边读边理解其中的含义。

  (5)理解分数单位的含义

  刚才大家动手分出了很多分数,这一部分都是几分之一,这些表示几分之一的分数还有一个共同的名字,是什么,请完成课本62页最上面的做一做,然后看62页中间一段话和,让学生自己理解什么是分数单位。

  师反馈:对照刚才学生分的几分之一说,这里表示其中1份的数叫做分数单位,也就是二分之一可以是一个分数单位。三分之一也可以是分数单位??,那么四分之三的分数单位是什么,六分之五里面有几个这样的分数单位??

  三、巩固练习:

  课本第63的第1、2、3、4题,第64页的第8题。

  四、回顾本节课你有什么收获?

  《比的意义》教学设计 篇8

  教学内容

  人教版小学数学第十一册46页—47页。

  教学目标:

  1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。

  2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。

  教学重点:比的意义。

  教学难点:比和除法、分数之间的联系和区别。

  教学过程:

  一、回忆生活素材,导入新课。

  师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?

  生2:黑板的周长是多少?

  生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4

  师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)

  [评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。

  二、充分感知,建构意义1、整理生活素材

  师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)

  宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?

  生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)

  2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。

  3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。

  学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。

  师:从这道题你能发现比值的取值范围吗?

  生:比值可以是整数,可以是小数,但更多形式是分数。

  4、练习①说出下面每个比的前项和后项,并说出比值。

  (生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。

  [评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。

  5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:

  比前项比号后项比值

  除法

  分数

  ②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。

  在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的'效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。

  (学生情绪高涨,一分钟后陆续汇报。)

  生1:(很高兴)四局比赛我赢了,4比0。

  生2:我和同伴打平局2比2。

  生3:我和同桌的比赛结果是2比3。

  ……

  师板书:4:02:32:20:43:1

  生:老师,比的后项不能为0,这里为什么是0呢?

  生:比赛中的比和我们今天学的比一样吗?

  生:这个2:2可以化简比吗?

  (没等我组织学生讨论,就有学生站了起来。)

  生:2:2只表示双方各得二分,不表示相除关系,不可以化简。

  生:4:0表示对方得0分。

  ……

  师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。

  生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。

  [评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。

  因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。

  三、巩固练习:

  ①、苹果是梨的,苹果与梨的比是():()

  ②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()

  ③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。

  ④开放题:选择合适的数量组成比

  我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。

  学生回答后讲评。

  [评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。

  四、小结归纳,应用拓展

  全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?

  [评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。

  课后反思:

  《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。

  《比的意义》教学设计 篇9

  教学内容:北师大版一年级上册数学书第24、25页的内容

  教学目标:1通过观察、动手操作,使学生理解加法交换率的含义。

  2使学生能从不同的角度去观察、思考问题,能看图列出两个不同的加法算式。

  3培养学生认真细心的学习态度,正确熟练的口算5以内的加法。

  4、利用各种游戏活动激发学生学习数学的兴趣。

  教学重点:仔细观察、动手操作,理解加法交换率的含义。

  教学难点:从不同的角度去观察和思考问题。

  教学方法:谈话法、观察操作法

  教具准备:课件、口算卡片

  教学过程

  一、 创设情境、激发兴趣

  同学们,秋天到了,秋娃娃伴着徐徐的凉风向我们走来。他想和小朋友门一起做5的拍手游戏,好么?

  拍手游戏:师:秋娃娃拍一,你拍几?

  生:我拍四。(师生一起拍)

  师:秋娃娃拍二,你拍几?

  生:我拍三。(师生一起拍)……

  二、主动探索,体会领悟

  游戏玩完了,秋娃娃玩的可高兴了,现在她想带大家到果园里去走一走、看一看,你们愿意么?

  (1)、课件出示主题图。

  师:从这幅图上你都看到了什么?

  生:左边2棵果树,右边有3棵果树。

  师:你能提出那些数学问题?

  生:一共有几棵果树?

  师:你会计算么?

  生1:2+3=5(说原因)

  生2: 3+2=5(说原因)

  师:说一说,这两个算式有什么相同点和不同点。(比较两个算式的相同点和不同点,初步体会加法交换率。)

  生1:这两个算式都是加法。

  生2:他们的加号两边都是2和3,等号后面都是5。

  生3:他们加号两边的数的位置交换了。

  师总结:看来交换加号两边数的位置他们的得数不变。

  利用操作,加深理解

  看到同学们这么聪明,秋娃娃可真高兴,它决定送给你们一份奖品。瞧(电脑出示第二幅图)

  师:秋娃娃送给她家什么奖品?你能说给你的同桌听么?(同桌互相交流)

  生:左边有1个苹果,右边有2个苹果。

  师:看了这幅图你能提出什么数学问题?

  生:一共有几个苹果。(学生独立列式,集体订正)

  1+2=3

  2+1=3

  师:说一说这两个算式又有什么相同点和不同点。(比较两个算式的异同,再次体会加法交换率。)

  学生操作

  看到小朋友们这么聪明,果园里的小动物可不服气了,说:“如果你能回答出我的问题那才叫本事呢!”同学们你们有信心么?

  摆一摆:左边摆一朵花,右边摆三朵花。(学生独立完成)

  看着自己摆的图片和同桌互相说算式。集体订正。

  1+3=4

  3+1=4

  二、 、运用知识、解决问题

  同学么顺利的解决了小动物的第一个题目,这会儿,小兔子急了,他也想给大家出个题目,瞧:(电脑出示图)

  师:从这幅图上你都看到什么了?

  生:有小兔子。

  生:还有萝卜。

  师:那么看了这幅图你能列出那些加法算式呢?

  生1:4+1=5(上面有4只小兔子,下面有1只小兔子。)

  生2:1+4=5

  生3:1+2=3(上面有1个萝卜,下面有2个萝卜。)

  生4:2+1=3

  师:同学们真棒!能够看着一幅图列出这么都得加法算式。我要给你们一点掌声。可是小动物门的题还没完呢!

  师:从这幅图上你又看到了什么?

  生:萝卜和盘子

  师:你能列出什么算式?

  生1:0+5=5

  生2:5+0=5

  师:为什么用0呢?

  生:因为左边的盘子里一个萝卜也没有。

  四、运用游戏、巩固新知

  1、手指游戏

  小朋友们刚才凭着自己的智慧勇敢的闯过了小动物门的重重关卡,咱们的朋友秋娃娃见了可真高兴!他向邀请小朋友和它一起做手指游戏。

  师:快、快、快、准备好,我们来做手指操。

  手指头动、手指头动,5可以分成1和几?

  生:5可以分成1和4,1+4=5、4+1=5。

  师:再把小手动一动、5可以分成2和几?

  生:5可以分成2和3,2+3=5、3+2=5。……

  师:小手、小手伸出来,我们一起做运动,

  我出1,你出几?

  生:你出1,我出4,1+4=5、4+1=5

  师:手指头动,再来动,我伸0,你伸几?

  生:你伸0,我伸5,0+5=5、5+0=5。……

  (师生互对、同桌互对)

  师:看了同学们玩得这么高兴,林子里的小鸟也想来参加,瞧:(电脑出示图)

  师:算一算一共有几只小鸟?

  生1:3+2=5(树下有3只鸟,树上有2只鸟。)

  生2:2+3=5

  生3:1+4=5(有1只大鸟,有4 只小鸟。)

  生4:4+1=5

  2、摘果子游戏

  时间过得真快,秋娃娃要回家了。可是他想请同学们帮她一个忙,帮他把林子里的'果子摘下来,你们愿意么?看来同学们都是乐于助人的好孩子。可是这可不是一般的果子,你必须要回答出树爷爷的一个问题,这个果子才能送给你,你们有信心么?(出示一棵挂满苹果的苹果树,每一个苹果上又一个题)

  4+1= 2+3= 0+4= 1+3= 5+0=

  2>( ) ( );5 2+( )=5 ( )+4=4

  1+4= 3+2= 0+5= 2+2= 3+1=

  三、 课堂小结

  1、学生自评

  刚才通过同学们的努力我么完成了这么多地题,而且还帮秋娃娃把果园里的果子也摘下来了,那么庆同学们相依相你这节课的表现,如果你觉得自己近填表现的特别好,就给自己的5颗星,如果你觉得今天表现的还行,就给自己的4颗星,如果你觉得自己今天表现得不够好,应该继续努力,就给自己得3颗星。请同学们拿出彩色笔为自己把表示成功的星星图上颜色。

  2、 教师总结板书设计:

  秋天的果园

  2+3=5

  3+2=5

  1+2=3 4+1=5 1+3=4

  2+1=3 1+4=5 3+1=4

  0+5=5

  5+0=5

  《比的意义》教学设计 篇10

  教学目标

  1、进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题。

  2、提高学生计算能力和估算能力。

  3、培养学生认真计算、自觉检验的好习惯。

  教学重点

  正确、熟练地计算较复杂的小数乘法。

  教学难点

  根据小数乘法的`意义正确判断积与被乘数的大小关系。

  教学过程

  一、检查复习

  (一)口算

  0.9×6

  7×0.08

  1.87×0

  0.3×0.6

  0.24×2

  1.4×0.3

  1.6×5

  4×0.25

  60×0.5

  7.8×1

  (二)说出下面各算式表示的意义

  2.4×0.8

  1.36×4

  2.58×0.2

  二、指导探索

  (一)教学例3 0.056×0.15

  1、学生独立计算,指名板演。

  2、指名说一说计算过程。

  教师提问:乘得的积的小数位数不够时,该怎么办?

  3、指导学生验算方法

  教师提问:怎样检验小数乘法计算是否正确?

  (运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

  (二)教学例4

  一个奶牛场八月份产奶18.5吨。九月份的产量是八月份的2.4倍。九月份产奶多少吨?

  1、独立解答、

  2、教师提问:

  (1)你是根据什么列式的?(一倍数×倍数=几倍数)

  (2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

  3、比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

  4、练习:不计算,说明下面各算式中积与被乘数的关系、

  10.8×0.9

  2.4×1.8

  50×0.36

  0.48×0.75

  讨论:在什么情况下,积小于第一个因数?

  在什么情况下,积等于第一个因数?

  在什么情况下,积大于第一个因数?

  5、小结:当第二个因数比1小时,积比第一个因数(零除外)小;

  当第二个因数等于1时,积等于第一个因数(零除外);

  当第二个因数比1大时,积比第一个因数(零除外)大;

  6、练习:不计算,判断下面各题的结果是否正确、

  0.72×0.15=1.08 0.36×1.8=0.648

  三、质疑小结

  (一)今天你都有什么收获?

  (二)对于今天的学习还有什么问题?

  教学设计点评

  教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。

  《比的意义》教学设计 篇11

  教学内容:

  苏教版六年级上册第9单元认识百分数的百分数的认识

  教学目标:

  1.知识目标:

  使学生理解百分数的意义,能够正确地读、写百分数,运用百分数解决简单的实际问题。

  2. 能力目标:

  使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力,促进个性化的教学理解与表达,初步建立自我评价与反思意识。

  3. 情感目标:

  使学生感受百分数在实际生活中的广泛应用,增强学好数学的信心,同时结合相关信息对学生进行思想品德教育,渗透数学应用思想。

  教学重难点:

  使学生理解百分数的意义,理解百分数与分数的.联系和区别。

  教学准备:

  小黑板、学生课前收集含有百分数的信息、多媒体。

  教学过程:

  一、创设问题情境,感受百分数的应用价值(揭示课题)。

  1、谈话导入

  2、出示例题:

  姓名李明张华吴军

  投中次数157235

  投篮次数2010050

  提问:从上面这张表格中你了解到什么信息?

  提问:从表中呈现的信息来看,冠军将属于谁?

  学生汇报结果

  3、小结:像这些分母是100的分数还可以表示成75%、72%、70%这样的形式。这样的数就是我们今天要学习的百分数。(板书课题:百分数)

  二、感悟、体验生活中的百分数。

  (一)理解百分数的意义

  1、尝试理解每个百分数的具体意义。

  2、概括百分数的意义。

  (1)师生交流概括:百分数表示的是一个数是另一个数的百分之几

  (2)师生交流深化百分数的概念

  提问:这句话提到几个量?

  小结:这2个量表示一种倍比关系,所以百分数也叫百分率或百分比。

  (3)生活中百分数意义的练习

  ①理解:羊毛衣成份:山羊绒10%, 羊毛85%,锦纶5%,每个百分数的意义。

  ②四人小组内交流,说说自己收集的百分数表示什么意思?(组内交流,教师巡视)

  (二)引导学生尝试百分数的读与写

  (1)学生读例题中的百分数,教师指正。特别强调100%的读法。

  比较:百分数与分数的读法的区别

  (2)教师写百分数,学生观察,并小结出写百分数的步骤

  写百分数时先写分子,再写百分号(%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小。

  (3)用百分数进行练习

  比赛:写10个自己最喜欢的'百分数,看谁写得又快又好。

  10秒后让学生汇报完成的任务(我完成了任务的( )%),并提问:为什么?

  特别强调指刚好完成任务与超任务的情况。

  三、巩固、拓展与应用。

  (一)书本练习p99/试一试

  (二)选百分数

  1、出示练习

  2、思考:百分号前面可以是哪些数呢?

  3、学生思考后汇报结果。

  4、提问:最小的百分数是1%吗?最大的百分数是100%吗?巩固概念,辨析异同。

  《比的意义》教学设计 篇12

  1.联系生活,从生活中引入,激发了学生学习兴趣。

  数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。

  2.有效地处理教材,让学生亲身经历数学模型的形成过程。

  《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的国旗的长宽比例的.探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。

  3、服务于生活,回到生活中去,解决生活中的实际问题。

  在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。

  《比的意义》教学设计 篇13

  教学内容:比例的意义

  教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

  教学重点:比例的意义。

  教学难点:找出相等的比组成比例。

  教学过程:

  一、旧知铺垫

  1、什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

  300:5=60:1

  (2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

  1.2:1.4=12:14=6:7

  2.求下面各比的比值。

  12:16:4.5:2.710:6

  二、探索新知

  1.教学例1。

  (1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

  ①说一说各幅图的情景。

  ②图中有什么相同之处?

  (2)你知道这些国旗的长和宽是多少吗?

  ①出现各图中国旗的长、宽数据。

  ②测量教室里国旗的长、宽各是多少厘米。

  (3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

  学生回答教师板书:

  60:40=

  (3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

  ①学生回答长、宽比值。

  2.4:1.6=

  ②两面国旗的长和宽的比值相等。

  板书:2.4:1.6=60:40

  也可以写成=

  (5)什么是比例?

  在这一基础上,教师可以明确告诉学生比例的意义,并板书:

  表示两个比相等的式子叫做比例。

  (6)找比例。

  师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

  过程要求:

  ①学生猜想另外两面国旗长、宽的比值。

  ②求出国旗长、宽的'比值,并组成比例。

  ③汇报。

  如:5:=15:10=

  5:=15:105:=2.4:1.6

  ==

  2.做一做。

  完成课文“做一做”。

  第1题。

  (1)什么样的比可以组成比例?

  (2)把组成的比例写出来。

  (3)说一说你是怎么找的。

  (4)同学之间互相交流,检验各自所写的比例。

  第2题。

  (1)学生独立写比例,看谁写得多。

  (2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

  3.课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  三巩固练习

  完成课文练习六第1~3题。

  四作业

  课后记:

  教学内容:比例的基本性质

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:比例的基本质性。

  教学难点:发现并概括出比例的基本质性。

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?]

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4:和5:2

  :和:0.2:和1:4

  3.用下面两个圆的有关数据可以组成多少个比例?

  如(1)半径与直径的比:=

  (2)半径的比等于直径的比:=

  (3)半径的比等于周长的比:=

  (4)周长与直径的比:=

  二探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6=60:40

  内项

  外项

  (2)学生认一认,说一说比例中的外项和内项。

  如::=:

  外内内外

  项项项项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1)学生独立探索其中的规律。

  (2)与同学交流你的发现。

  (3)汇报你的发现,全班交流。

  板书:两个外项的积是2.4×40=96

  两个内项的积是1.6×60=96

  外项的积等于内项的积。

  (4)举例说明,检验发现。

  如::0.5=1.2:

  两个外项的积是×=0.6

  两个内项的积是0.5×1.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:=

  2.4×40=1.6×60

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5)归纳。

【《比的意义》教学设计】相关文章:

《比的意义》教学设计04-23

比的意义教学设计02-22

《比的意义》教学设计04-23

《比的意义》设计教学07-08

比的意义教学设计02-22

数意义教学设计04-10

方程意义教学设计04-19

《方程意义》教学设计04-27

小数的意义教学设计06-22