比的应用教学设计(实用15篇)
作为一位杰出的教职工,就有可能用到教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的比的应用教学设计,仅供参考,希望能够帮助到大家。
比的应用教学设计1
一、复习引入
1.回忆列方程解决问题的一般步骤。
学生小组内交流。
2.在横线上写出含有字母的式子。
(1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。
(2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。
学生独立思考后,指名回答。
二、讲授新知
1. 导入。
教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)
2.探究新知。
(1)分析题旨、提出问题
教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?
学生认真读题,分析题意,全班交流。
教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?
学生独立思考,全班交流汇报。
(2)找等量关系。
教师:你能用一个等量关系式来表示它们之间的相等关系吗?
小组合作,全班交流。
多媒体出示各种等量关系式的情况:
①小雁塔的高度×2-22=大雁塔的高度。
②小雁塔的高度×2=大雁塔的高度+22。
③小雁塔的高度×2-大雁塔的高度=22。
④(大雁塔的高度+22)÷2=小雁塔的高度。
教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。
教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?
指名学生回答。
(3)引导列出方程。
教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?
学生独立思考,全班交流。
教师:根据等量关系式,你们能列出方程吗?
学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。
解:设小雁塔高x米。
2x-22=64
(4)自主思考、解方程。
教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?
小组合作探究,全班交流。
通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。
教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。
组织交流解方程的整个过程,并完整板书。
解:设小雁塔高 x米。
2x-22=64
2x-22+22=64+22
2x=86
x=43
(5)引导检验、培养习惯。
教师:你打算怎样对这道题进行检验?
学生各自检验,指名汇报检验方法。
教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。
3.内化理解、触类旁通。
教师:根据等量关系还可以怎样列方程解决?
学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。
集体交流,然后说说怎样来解自己的方程。
4.对比归纳、掌握方法。
教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?
小组交流,明确:顺着题意来列方程比较简便。
三、巩固应用
(一)预习答疑
这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。
(二)教材习题
1.教材第10页“练一练”。
引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)
2. 教材第11页练习二第5题。
独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )
3. 教材第11页练习二第6题。
学生直接填空,全班交流。(3x+15 4x-80)
4.教材第11页练习二第7题。
学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)
5.教材第11页练习二。第8题。
学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)
(三)课堂作业
完成第三部分习题设计“课堂作业”第1、3题。
学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。
四、总结提升
1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?
2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?
五、布置作业
完成第三部分习题设计“课后作业”第5、6、7题。
设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。
设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的`研究中去。
设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。
设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。
设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。
设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。
比的应用教学设计2
课题:
比的应用
教学内容:
义务教育课程标准小学数学六年级上册第三单元《比的应用》
教学目标:
1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。
3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。
教学重点:
掌握按比分配应用题的结构特点和解题思路。
教学难点:
正确分析,灵活解决按比分配的实际问题。
教学准备:
教学课件卡片
教学过程:
一、复习导入
1、复习求一个数的几分之几是多少的实际问题。
2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。
二、讲授新课
1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。
2、利用课件出示例2。
(1)学生读题,弄清题意。
(2)引导学生找出题中所提供的数学信息。
(3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。
(4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。
(5)小组讨论解题方法,然后进行汇报,并集体订正。
(6)引导学生用不同的方法解决问题,重点理解按比分配的方法。
(7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。
3、小结:按比分配的应用题有什么结构特点?怎样解答这样的.应用题?
三、巩固练习
1、解决课前分卡片时所产生的问题。
2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题
的异同,并用自己喜欢的方法解决,后集体订正。
3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,鼓励学生用不同的方法独立解决,并引导学生自行检验。
四、拓展延伸
利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
五、课堂总结
学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。
比的应用教学设计3
教学目标
1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。
2。会联系加减法的含义解答有图有文字的一步计算应用题。
3。培养初步的分析、判断和推理能力。
教学重点
有图有文字应用题的解答。
教学难点
解答有图有文字的减法应用题。
教具学具准备
教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。
学生准备教科书第88页数学游戏的口算卡片和得数卡片。
教学步骤
一、铺垫孕伏。
6+2=9+4=9+9=
9+3=3+5=4+6=
9+7=9+6=9+5=
2+7=9+2=9+8=
统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。
二、探究新知。
1、导入。
(1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。
师:图中先告诉我们什么?又告诉我们什么?
引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。
师:求一共是多少只该怎样算呢?
引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。
教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。
(2)揭示课题。
像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。
2、教学例5左边的加法应用题。
(1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?
引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?
教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。
(2)求一共是多少只怎样计算呢?
引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的'6只合起来,把3和6合起来是9,列式为3+6=9
(3)让学生把教科书第88页例5左题的算式补充完整。
(4)反馈练习。
完成“做一做”左边的加法题(小兔图)。
先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。
3、教学例5右边的减法应用题。
(1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状。看图,你知道了什么?怎样计算?
引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6
(2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题。
让学生自由读一读题,找出题中的两个已知条件和1个问题。
引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的。问题是:还剩几个?也是用文字叙述的。
师:求还剩几个应该怎样想,怎样列式呢?
引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6
(3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。
(4)反馈练习。
完成“做一做”右边的题(汽车图)。
先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的空。订正时提问:为什么用减法算?
4、集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?
引导学生汇报:
相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。
不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。
5、看书,质疑。
三、课堂小结。
今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。
四、随堂练习。
1、练习十九第1题(图片:练习3)。
先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。
2、比比看哪组先夺得红旗(图片:练习4)。
把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。
3、游戏“你争我抢”【详见探究活动】。
布置作业
(投影片出示)
让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。
板书设计
应用题
教案点评:
教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。
比的应用教学设计4
课题:
分数的简单应用
科目:
数学
教学对象:
三年级
课时:
2课时
教学内容分析:
本节课是在学生初步认识了分数之后,学习用分数解决一些简单的实际问题,主要先让学生了解把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示,加深学生对分数含义的理解,学会用简单分数描述一些简单的生活现象;接着通过直观操作与已经掌握的分数含义相结合解决简单的实际问题,培养了学生解决问题的能力,发展抽象概括和类比推理能力,发展学生的数感。让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动的经验。
教学目标:
1、通过说一说,分一分,画一画等数学活动,让学生经历“整体”由“1个”到“多个”的过程,指导把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能运用分数的相关知识,描述一些生活现象;发展抽象概括和类比推理能力,发展学生的数感。
3、让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动经验。
学习者特征分析:
1、学生是9-10岁的儿童,思维活跃,课堂上喜欢表现自己,对数学学习有浓厚的兴趣;
2、学生在学习中随意性非常明显,渴望得到教师或同学的赞许;
3、学生在平常的生活当中有“自己的事情自己做”的经历和体验,比如自己整理书包、系红领巾等;
4、学生已对数学有一定的认识和了解,对分数有了一定的认识;
5、学生已经学习了分数的简单计算;
6、学生对于分数有了自己的理解,对于整体和平均分有了一定的认识和理解,知道了一个整体的平均分,用分数表示和计算。
教学策略选择与设计:
在教学中,首先我通过让学生对比发现一个正方形和4个正方形的区别和联系,循序渐进地让学生体会“1”是一些物体时,如何用分数表示整体与部分关系,初步形成认识:与“1”是一个物体是相同的,平均分成几份分母就是几,取其中的几份分子就是几,取几份就有几个1份那么多。
接着,出示苹果图,让学生进一步巩固把多个物体看成一个整体的数学思维,并且让学生自己动手画一画,分一分,亲身经历“整体”由“1个”到“多个”的过程。在分苹果的过程中,有意识地进行拓展,让学生了解到“总数一样,平均分的份数不一样,每一份所用的分数表示也不一样”和“总数不一样,平均分的份数一样,每一份的数量也不一样”,培养学生的逻辑思维能力。
在整节课教学中,注重让学生用数学语言描述动作过程和结果,通过语言描述可以将学生的思维过程外显,加深对分数含义的理解。
教学重点:
知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
教学难点:
从份数的角度理解“部分”与“整体”的关系和平均分。
教学过程:
一、创设情景,揭示课题
谈话:让学生举例说分数及表示的意思,比较分数的大小,做几道分数的加减法的题,复习分数加减的规律。
小结:把一个物体平均分成几份,分母就是几,取其中的几份,分子就是几。
师:这节课,我们继续学习分数。
二、探究体验,经历过程
1、初步感知整体由“1个”变成“多个”。
(1)黑板出示例1(1)左侧的内容
①让学生用分数表示涂色部分并说说4/1表示什么意思。
②如果涂色部分有2份呢?用分数怎么表示?3份呢? (2)课件出示例1(1)右侧的内容,动态演示剪的过程。 ①课件演示将一个正方形平均分成了4个正方形。
问:涂色部分是其中的几份?这样的一份还能用分数表示吗?
②这样的2份是4个正方形的几分之几呢,3份呢?
③对比两个4/1,它们所表示的意思是否一样?
小结:不仅可以把一个正方形平均分,还可以把4个正方形看成一个整体平均分。其中的1份都能用4/1表示。
2、从份数角度理解部分与整体的关系
课件出示第100页例1(2)的内容,动态演示平均分的过程。(有6个苹果,平均分成了3份)
① 其中的1份是苹果总数的几分之几?你能说说这个1/3表示的意思吗?你是怎么知道每一份用1/3表示的?
②1份是苹果总数的1/3,2份是苹果总数的几分之几呢?3份呢?
3、自主探索,加深认识
出示学具(苹果图),还可以怎么分?
(1)学生独立思考,自主探索
(2)学生展示,汇报交流
(3)对比提升,为什么同样是一份,却用不同的份数表示? (平均分的份数不一样)
4、比较辨析,提升认识 出示课件
①你能用分数表示其中的一份吗?
②为什么都能用1/3表示?(都是把苹果平均分成了3份,取其中的1份?)
② 每一份各有多少个苹果呢?(2个、3个、4个)
④为什么同样都是1/3,每一份的数量却不一样? (苹果的总数不同,所以每一份的数量也不同)
三、巩固练习,深入理解
1、完成教材第100页“做一做”的.第1题。重点让学生说说分数表示的意义。
2、完成教材第100页“做一做”的第2题。 学生独立完成后,集体交流。 (将9个△平均分成了几份?每1份有几个△,2份呢?)
3、完成教材第100页“做一做”的第3题。 同桌合作学习,动手摆一摆,并说一说想的过程。 (把这个10根小棒平均分成5份,其中的1份是2根,2份就是4根。)
4、完成教材第102页练习二十二第2题。学生独立完成,集体交流,让学生结合图说一说分数表示的意义。
四、课堂小结 这节课你有什么收获?
教学评价设计:吕家岘小学办公室主任对我的这节课作如下评价: 首先白丽老师作为一名刚刚走上工作岗位的新教师,在第一次公开课上能达到这个教学水平还是不错的,当然除了优点以外,还存在一些不足之处,比如整个课堂气氛的创造上还不够,还要进一步下功夫,另外课堂的把握上也还存在一些问题,希望在以后的教学过程中多向有经验的老教师学习,多听老教师的课。 板书设计: 分数的简单应用
6个苹果平均分成3份, 1份是苹果总数的 2份是苹果总数的
12÷3=4(人) 12÷3=4(人) 4×2=8(人)
答:女生有4人,男生有8人。
教学反思:分数的简单应用是在学生学习了分数的认识、比较分数的大小和分数计算的基础上而解决实际问题的内容。这节课从学生的认知规律出发,符合三年级学生的年龄特点。教师应该认真分析教材内容,把分数的意义、分数的计算和解决问题融为一体。把解决问题的方法潜移默化的渗透给学生。
1、激发兴趣,主动探究。
学生有了兴趣就会产生强烈的求知欲望,就能积极主动地参与活动,成为学习的主体。教师应该抓住小学生好动的特点,充分利用操作材料,组织学生动手操作,通过摆一摆、画一画、算一算、说一说等活动,促使学生耳、口、手、脑等各种感官并用。教师参与到学生当中引导学生由浅入深逐步探究,营造了宽松和谐的学习氛围,激发了学生学习兴趣。
2、问题引导,落实目标。
紧紧围绕教学目标设计教学活动,教学中教师把学生当作研究者、发现者。课堂上教师以问题为引导,让学生自由地思考探究、操作交流。学生亲身经历数学知识的形成过程,经历知识从形象到表象再到抽象的过程。从中体验解决问题的思想和方法。例如:三分之一是女生,三分之一表示什么意思?三分之二是男生,三分之二是什么意思?进一步理解分数的意义。再如:请你用自己喜欢的方式求出男、女生的人数,再以小组为单位和小组同学说一说你是怎么想的?通过交流的过程学生将图形、语言、算式三种表征进行有机结合,在解决问题的同时加深了对分数的理解。
3、大胆放手,能力培养。
《数学课程标准》强调:“要鼓励学生独立思考、自主探究,为学生提供积极思考与合作交流的空间。”本节课教师充分利用学生已有的知识经验,给学生提供自主学习和合作交流两种学习方式。给予了学生自己操作、主动探究的空间,学生真正的成为了学习的主人,真正的掌握了学习的主动权,真正把课堂还给了学生。学生在小组合作讨论、全体汇报交流时,思维相互碰撞,智慧相互启迪,有的学生用小棒摆一摆,有的学生画一画,有的学生用算式计算,且算法多样。达到不同学生之间的资源共享,优势互补的目的,既培养了学生的合作意识,又培养了学生的探究能力。学生体验到成功的喜悦。
4、本节课抓住了学生的身边生活去学习数学,应用数学。把教材的内容与现实紧密结合起来,符合学生的认知特点。同时也消除了学生对数学的陌生感。
通过本节课也看到了自己需要努力的方向。譬如时间安排前松后紧,有一点拖堂;教师语言还不够精炼,上下衔接不流畅。但今后的教育道路还很长,我会不断努力,每一节课都会与我的学生共同成长。
比的应用教学设计5
设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
教学内容:六年级上册比的应用
教学目标:
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的养成。
教学重点:掌握解答按比例分配应用题的步骤。
教学难点:掌握解题的关键。
教学过程:
一、创设情境,感受价值
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)
注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学
1、探究例题
呈现例题,根据学生的建议,共同完成例1
师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵? (2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?
师:请同学们独立思考,独立完成(教师巡视、指导)
(3)展示结果
根据学生的回答板书解题方法
第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)
第二种:2+3=5
60×3/5=36(棵) 60×2/5=24(棵)
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题
师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的'关键是被分的总数和分配的比,从而突出重点,突破难点。
三、巩固练习教材做一做。
四、总结
通过这节课的学习,你有什么收获?
教学反思:
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。
比的应用教学设计6
一、教材分析
本节课是在学习了比的意义和化简的基础上学习的,通过分橘子活动的实际操作为学生探索解决按一定的比分配的应用题的解题策略奠定了基础,也为今后学习正比例积累了经验,通过动手操作,合作交流与探索使学生在比较的基础上选择合理的解题策略,进一步提高解决问题的能力。学情分析
本节内容是在学生理解了比的'意义,比与分数和除法的关系等有关知识的基础上进行的,为了面向全体学生,本节课通过创设分橘子的情境,引导学生动手操作,寻找解题策略,从而理解平均分在生活中的局限性,明确按一定的比分配的实际意义和解题策略。
二、教学目标
能运用比的意义解决按一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
三、过程与方法:
经历运用所学知识解决实际生活中一些简单问题的过程,掌握按一定的比分配的问题的解答方法。
四、情感态度与价值观:
体会数学与生活的紧密联系,培养学生的合作意识和数学思考方法。
五、教学重点和难点
重点:进一步理解比的意义。
难点:应用比的意义来解决实际问题。
六、教法:
本节课采用引导探究,转化归纳,联系实际的教学方法,创设了用小棒代替分橘子的教学情境,联系生活实际组织引导学生探究解题策略,紧抓教学难点,紧扣分数与比和除法的关系,放手让学生解答,增加学习的趣味性,使学生明白按比例分配的合理性。
七、学法:
主要采用合作探究,实践应用,练习反馈的学习方法,学生通过自主探究了解比在实际生活中的应用,从而加强了对比的意义的深刻理解,亲身经历探索解题策略的乐趣,培养学生的抽象概括能力,感受比在生活中的实际应用,提高解题能力。
八、存在问题:
由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。
九、改进措施:
为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣,从而提高教学效果。
比的应用教学设计7
教学目标
1.通过学习,使学生掌握连乘应用题的基本结构和数量关系,学会列综合算式.
2.使学生学会用两种方法解答连乘应用题的同时能用一种解法检验另一种解法.
3.培养学生的分析能力和灵活应用知识的能力,提高用简炼的数学语言表达的能力.
4.激发学生的学习兴趣,体会生活中处处有数学.
5.培养学生认真检验的好习惯.
教学重点
认识连乘应用题的数量关系,初步学会两种解答方法.
教学难点
理解连乘应用题的两种解题思路,掌握解题方法.
教学过程
一、复习铺垫.
1.先分析数量关系再解答.
(1)某车间每班有4个组,每组有11人,每班有多少人?
(2)一辆卡车可以装30袋化肥,每袋重50千克,一辆卡车能装多少化肥?
2.演示动画“连乘应用题”
根据动画演示的内容分别补充问题,再解答.
(1)一个商店运进5箱热水瓶,每箱12个,_______________?
(2)每箱有12个热水瓶,每个热水瓶卖35元,______________?
3.引入新课.
教师提问:复习中的应用题都是两个已知条件和一个问题,它们的数量关系共同的特点是什么?(都是求几个相同加数的和用“×”计算.)
把动画复习的两道应用题连起来看,让学生把复习中的两道题合并成一道题.教师根据学生的叙述板书题目,引出例1.
教师导入:看来,在我们的生活中不光会遇到比较简单的实际问题,还会有这样稍复杂的问题等待我们去解决.今天我们就一起来共同学习:应用题.(出示课题)
二、探究新知.
1.出示例1:一个商店运进5箱热水瓶,每箱12个.每个热水瓶卖35元,一共可以卖多少元?
(1)指名读题,并说出已知条件和问题.
继续演示动画“连乘应用题”,实物图逐步转化为线段图.
(2)小组讨论:你准备怎么解答这道题?并说出解答的思路.
学生以小组为单位讨论,教师巡视,并参与学生的讨论.
(3)汇报讨论的结果,并说说你是怎么想的?
学生可能想到:
方法1:要求一共卖多少元,需要知道每箱卖多少元和一共有多少箱.已知共有5箱,未知每箱多少元.因此,要首先求出每箱多少元.已知每个35元,每箱12个,求出每箱卖多少元就是求12个35是多少,用35×12=420(元),再求出5箱一共卖多少元,就是5个420是多少,用420×5=2100(元).
板书:① 每箱多少元?
35×12=420(元)
5箱一共多少元?
420×5=2100(元)
方法2:要求一共可以卖多少元,需要知道每个卖多少元和一共多少个.已知每个卖11元,未知一共多少个,先要求出一共多少个.每箱有12个,有5箱,求一共多少个就是求5个12是多少,用12×5=60(个),再求一共卖多少元,就是求60个35是多少,用35×60=2100(元).
板书:② 5箱一共多少个?
12×5=60(个)
5箱一共多少元?
35×60=2100(元)
(4)教师谈话:像这样的两步计算应用题,可以分步列式,也可以列综合算式,请同学们自己试着将这两种解法分别列成综合算式.
学生动笔列式,汇报订正:
35×12×5 35×(12×5)
教师提问:第一种解法是先求的什么?再求什么?第二种解法是先求什么?再求什么?为什么要加小括号?不加行不行?
(引导学生说出第一种解法是先求的'每箱多少元,再求5箱一共多少元.第二种解法是先求5箱一共多少个,再求5箱一共多少元.因为运算中要先算12×5,就必须加小括号,否则运算顺序就变了,不符合题意.)
(5)比较、辨析:这两种解法有什么区别和联系?
明确两种解法的区别是:第一种解法是先求的每箱多少元再求5箱一共多少元,第二种解法是先求5箱一共多少个再求5箱一共多少元;思路不同,用的已知条件也不同.联系是:最后都能求出来“5箱一共多少元”.
(6)引导学生发现:两种解题思路的相同点是求一共可以卖多少元.不同点是先求什么不一样,先求一箱可以卖多少元,是以每箱多少元作单价;先求一共有多少瓶,是以一瓶多少元作单价.)
师生共同总结:方法不同,结果相同.
(7)学生思考:我们用了两种方法解这道题,怎样检验呢?
(可以互相检验,用其中一种方法解答,用另一种方法检验.)
三、尝试练习.
学校有3排房子,每排有4个教室,每个教室装6盏灯,一共安装多少盏灯?(用一种方法解答,然后用另一种方法检验.)
(1)指名读题,说出已知条件和问题.
(2)独立分析,列分步算式解答.
(3)订正:说出解题思路,再列式计算.
解法1:每排安装多少盏灯?
6×4=24(盏)
3排安装多少盏灯?
24×3=72(盏)
综合算式:6×4×3
=24×3
=72(盏)
答:3排安装72盏灯.
解法2:一共有多少个教室?
4×3=12(个)
一共安装多少盏灯?
6×12=72(盏)
综合算式:6×(4×3)
=6×12
=72(盏)
答:3排安装72盏灯.
(4)检验.师:我们可以从中任选一种方法解答,而另一种方法来检验.从小养成做事认真负责的好习惯.
四、巩固练习.
1.小明的集邮册中,每页贴3行邮票,每行帖5张,3页一共贴多少张邮票?(用两种方法解答)
2.两个小组割青草,每个小组割3捆,每捆8千克,一共割多少千克的青草?(用两种方法解答)
五、总结归纳.
教师提问:
(1)这节课学习的应用题有什么特点?(板书:连乘应用题)
(2)这节课你有什么收获?
六、布置作业.
练习二十二第2题
两个运输队运沙子,每队运3车,平均每车重5吨.一共运多少吨沙子?
练习二十二第3题
张庄小学新盖9间教室,每间教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?
比的应用教学设计8
教学内容:以“求和”为基本数量关系的两步计算应用题(书p51)
教学目标:使学生理解以“求和”为基本数量关系的两步计算应用题的结构,能用分析法或综合法分析数量关系,会口述解题步骤,能正确地列式解答。
教学步骤:
一、准备引新
1、秋天到了,让我们到果园里看看吧!果园里种满了什么树呀?如果老师告诉大家果园里有苹果树1420棵,要求苹果树和梨树一共有多少棵?(出示准备题1)你能解答吗?为什么?谁来补一个条件呢?
2、学生补充条件,并列式计算
梨树有1000棵 1420+1000=2420(棵)
3、这是一道几步计算的应用题?谁能补一个条件,使它成为两步计算的应用题?
学生口答补充:(1)梨树比苹果树少420棵
(2)梨树比苹果树多420棵
(3)苹果树比梨树少420棵
(4)苹果树比梨树多420棵
4、揭题:这样的两步计算应用题就是我们今天要学习的新课,现在我们先一起来研究第一种
二、探究新知:
1、研究例3
(1) 读题,找条件和问题,师画出线段图
(2) 根据小黑板上的思考提示,同桌互说这道题的解题思路
(3) 学生在本子上试做这道题,只用列出分步算式,快的同学可以列出综合算式。
(4) 指名板演算式,集体交流:指名说解题思路,1420表示什么?1000表示什么?
(5) 综合算式怎么写 ?谁还有不同的写法?1420-420表示什么?
2、如果补充的是“梨树比苹果树多420棵”,你怎样想?怎样算呢?根据思考提示自己思考后在本子上列式计算。
指名板演,并说说先求什么?再求什么?
3、小结:
我们今天学习的.两步计算应用题跟以前学习的两步计算应用题在条件上有什么不同?只有两个条件的时候,其中一个条件需要用到几次,这两题中的哪个条件用了两次?第一次用它求什么?第二次用它求什么?但今天学习的两步计算应用题跟以前学习的两步计算应用题有一点还是相同的,那就是关键都是先求出中间问题。
三、巩固深化
1、p52练一练1,请学生写在书上,集体校对
2、p52练一练2,看线段图列式计算
3、p52练一练3判断:谁的解法对?
小刚:240+40=280(人)
小明:240+40=280(人)
240+280=520(人)
小华:240-40=200(人)
240+200=440(人)
小青:240+240=480(人)
480+40=520(人)
小组讨论,选出正确的答案,错的答案要说说错在哪里?
4、p53练一练5
5、p53练一练4
四、总结
今天你学会了什么?
比的应用教学设计9
教学目标
1.使学生了解本金、利息、利率、利息税的含义.
2.理解算理,使学生学会计算定期存款的利息.
3.初步掌握去银行存钱的本领.
教学重点
1.储蓄知识相关概念的建立.
2.一年以上定期存款利息的计算.
教学难点
年利率概念的理解.
教学过程
一、谈话导入
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.
二、新授教学
(一)建立相关储蓄知识概念.
1.建立本金、利息、利率、利息税的概念.
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.
(2)教师板书:
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
2.出示一年期存单.
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)
教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.
4.出示国家最新公布的定期存款年利率表.
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.
(3)那什么是年利率呢?
(二)相关计算
张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?
1.帮助张华填写存单.
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结
请你说一说如何计算利息?
三、课堂练习
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息
捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给希望工程多少元钱?
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)80011.7%
(2)80011.7%2
(3)800(1+11.7%)
(4)800+80011.7%2(1-20%)
3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的'利率是多少?
四、巩固提高
(一)填写一张存款单.
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?
五、课堂总结
通过今天的学习,你有什么收获?
六、布置作业
1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给希望工程多少元钱?
2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?
3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?
比的应用教学设计10
经过数十年的时间我国从最初的成立到现在的繁荣昌盛,科技的功劳十分重大。也因为电子计算机信息技术的方便使用,它扩展到了各行各业。多媒体课件作为一个科学技术的产物,为现代教育提供了一种科学的教学方式。在课堂上,它能够为学生们提供一个丰富多彩,立体式的教学环境,也帮助老师们提供一个更为轻松,且教学能够更加全面的教育平台。解决了过去落后的教学方式无法解决的诸多难题,做到了过去传统的教学方式所不能轻易摘到的教育硕果。但凡事有利有弊,对于多媒体课件的使用我们要扬长避短,万万不可给教学带来负面影响。
一、多媒体课件教学的好处
(一)内容表达饱满。会计课程的书本理论知识很复杂,也更为抽象,同时还需要学生们具有将所学理论知识应用到实际中的动手能力,所以,传统的教学方式死板让学生们的学习吸收较难。而现在,多媒体课件的应用,可以让曾经抽象晦涩的知识点通过图片,动画等方式做到更加直观的展示,使学生们对于知识点的理解更为圆润饱满。
(二)教学效率更高。过去传统教学所涵盖的信息量除了书本上的知识理论外,就只有老师自身所拥有的经验信息,而多媒体课件作为一种新时代的科技产物,它能够通过联网搜索全世界相关的知识,新与旧二者所包含的信息量不可同日而语。传统教学方式的死记硬背,需要浪费学生大量的时间,为了防止学生之间的知识量差异巨大化,老师也只能选择减慢课堂教学的速度来保持学生之间的学习平衡。但随着多媒体课件的出现,教师们只要将所需掌握的知识重点进行简要的说明,剩下的,包括重点的深度解析和理论知识的运用,可以通过多媒体课件所蕴含的大量相关信息,以文字、图片、影像和声音等方式表述,并对于学生们所学知识不懂的地方进行深度刨悉,便于学生们的理解,从而加快课堂的教学效率。
二、使用多媒体软件的注意事项
(一)不可滥用。多媒体信息技术作为现在课堂教育最为先进辅助工具之一,应该要利用好它信息量大、使用灵活的特点,扬长避短,明白其最终的功用是加快老师的教学效率,学生们学习的快速吸收。如果做不到因课制宜多媒体课件使用的基本要求,只会让其成为一种掣肘,发挥不出其应有的好处,反而会将教学带入形式主义的深渊。例如,如果在进行一堂会计课程的基本教学——账簿分类时,只需要将“订本账”“活页账”“卡片账”三样账簿的实物样本拿给学生门去看,并且说几句相关的中心讲解就可以,这样完全就已经把所要教授的东西说清楚了。可有些时候,教师会把这一段简单的课堂教学做成三维动画,这是一种非常浪费时间的行为,明明可以用最简单的方式就可以将课程讲述清楚,非要化简成繁多此一举,弱化了课件的功能,将其变成了一种虚拟形式,课堂所需要的教学效果却微乎其微。因此,在制作课程软件的时候,教师一定要选择好最佳的教学点和教学时机,将一堂课程的进度牢牢把握在自己的手中,并且要追求课件使用的实际效果,不是每一堂课都需要用到多媒体课件的。
(二)追求学生学习的自主性。因为电子计算机所拥有大量信息,和信息传送速度较快的特性,所以有部分教师经常会给学生们传输大量并无实际意义的感性资料,忽视了使用多媒体课件的基本目的,即改变老师讲,学生听的传统式教学方式。利用多媒体课件,老师们应该尽可能地使用引导式教学,把握课堂上学生们的每一次动态,引动他们的学习动机,学习兴趣,让他们进行自主性的学习,而不是教师单纯的操作鼠标,学生们单纯的观看不停变换的视频影响。这么做的结果就是,虽然吸引了学生们的目光,却没有调动他们的大脑,让学生的思维处在空白之中。故而,编者以为,在教室进行一个多媒体课程制作的时候,要确定好自己这一堂课程的教学目的,并选取合适的相关资料,确保能够引起学生们大脑的`积极思考,调动学生们学习的自主性,从而调高学习效率。
三、多媒体课件正确的使用方法
(一)双向交流。教学不是教师一个人的事情,而是教师与学生双方彼此的事情。在一堂课程上要保证是教师和学生在交流,切不可变成学生与多媒体教程课件单纯的冰冷对视,所以,这对于教师有严格的要求。多媒体课件作为教师所编程的一个智力劳动结晶,最明白它的人还是它的制作者。对于多媒体课件的应用,切忌“拿来主义”。在编写多媒体课件时,教师要有循环渐进的系统性。首先要吃透教学大纲的教学目的,在自己的脑海里形成教学的中心主体,然后对教材和参考资料研读,对其中的知识进行整理,最后根据学生的情况编写教学文案和演讲稿,确定要使用多媒体课件教学的教材章节,在能够完全吸引起学生们的主观能动性的前提下,开始课程讲解,提高学生们的理论知识,实践能力,为社会发展做出贡献。
(二)教师的提升。多媒体课件只是教师教学手段的辅助方法之一,一味追求外在的提升终究会落得下乘。作为教育行业中的核心,教师其本身的提升是更为重要的。时代在进步,知识也无时无刻不在提升,教师们应该以身作则,为学生们树立榜样,提升自己的同时做到提升教学质量,为社会的和平发展,国家的昌盛繁荣做出贡献。
四、结束语
中华民族作为一个传承了千年的文明种族,离开不教育。随着现今科技的发展,我国对于传统教育的更新势在必行,作为教育行业的核心,教师们在对自己提升的同时,也要跟上时代的进步,利用好科技的力量,从而实现教学质量和教学速度的双向提升。
比的应用教学设计11
教学内容:
人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。
学情分析:
1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。
2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的.意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
教学目标:
1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。
3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。
教学重难点:
重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:
多媒体课件,答题纸,小棒。
教学过程:
师:你想到的这个数表示什么意思?
(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)
二、探究新知。
1、初步感受整体由“1个”变“多个”
(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?
(2)、现在你又想到了哪个数?它表示什么意思?
(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?
(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?
2.理解部分与整体的关系。
(1)课件出示六个苹果,动态演示平均分的过程。
学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)
(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)
3、回顾建模。
课件出示:
引导学生回顾总
结:我们不仅可以把一个完整的物体
或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。
三、动手操作,加深认识。
1、“均匀地分”。
(1)提出要求:老师给大家准备了12个苹果,
请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。
(2)生独立思考,动手操作。
(3)、汇报交流。
(4)对比提升。
课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。
2、“创新地画”。
(2)生独立思考,动手操作。
(3)、汇报交流,展示学生作品。
预设:因为都是把整体平均分成了2份,取其中的1份。
师:哪儿不同?
预设:总数不同,每份数也不同。
四、闯关游戏,加深理解。
第一关:“准确地拿”。
第二关:“独具慧眼”。
五、回顾反思,结束全课。
1、引导学生回顾反思:今天你有什么收获?
2、师给与评价
比的应用教学设计12
教学目标
1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题。
2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力。
3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯。
教学重点
使学生了解归一应用题的基本结构和数量关系,会解答此类应用题。
教学难点
线段图的画法及检验方法。
教学过程
一、联系生活,激趣引入。
(课前,可以布置任务:让学生调查各自所用的学习用品的价钱)
1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适。正好同学们做了调查,谁愿意介绍一下。
学生介绍,如:这种钢笔很好用,每支8元。
师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系?
列式:8×6=48(元)单价×数量=总价
2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢?
此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的'铅笔要花多少钱,就要先求出什么?(单价)
根据哪一数量关系求单价?(总价 ÷ 数量 = 单价)
3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.
二、尝试讨论,学习新知.
1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?
(1)请学生自由出声读题,找出已知条件和问题
(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.
(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么?
(4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:
“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元)
(5)按照刚才的思路解题.
a.每个书架多少元?
75 ÷ 3 = 25(元)
b.买5个要用多少元?
25 × 5 = 125(元)
教师让学生独立列出综合算式并订正:75÷3×
5 教师提问:这道题怎样检验?请检验这道题.
教师指名完整地说说这道题的解题思路.
引导学生思考:如果把第三个条件改为“ 6个、9个、12个”,问题不变,仍求要用多少元?怎样列式?为什么?
2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.
出示例4:学校买了3个书架,一共用7 5元.照这样计算,200元可以买多少个书架?
让学生独立画线段图,理解题意.
重点讨论:线段图应该怎样改?这道题要先求什么?
③学生独立解题.
a.每个书架多少元?
75÷3=25(元)
b.200元可以买多少个书架?
200÷25=8(个)
④共同讨论:怎样列综合算式?为什么要给75+3加上小括号?
200 ÷(75 ÷ 3)
⑤教师提问:这道题怎样检验?
⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?
3.请同学们自己试做下面两道题。
①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?
②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?
订正:
①a.每小时行多少千米?
70 ÷ 2 = 35(千米)
b.7小时行多少千米?
35 × 7 = 245(千米) 70 ÷ 2 × 7
②a.每小时磨小麦多少千克?
250 ÷ 5 = 50(千克)
b.磨1750千克小麦需要几小时?
1750 ÷ 50 = 35(时) 1750 ÷(250 ÷ 5)
请学生分别说说各题的解题思路是什么?
教师提问:比较例
3、例4和试做(3),每两道题之间的相同地方是什么?不同地方是什么?解题思路上有什么相同地方?
使学生明确:从应用题的结构上看,前两个条件相同(给出了总数量和份数),都有“照这样计算”的语句,第三个条件和问题不同.从解题思路上看,第一步都要求出单位数量(即每份数是多少、单价、速度等),教师点题,出示课题:归一应用题.
三、巩固练习,发展思维.
1.独立分析题目的条件和问题,找出先求什么,再列综合算式.
①小林看一本故事书,3天看了24页.照这样计算,7天可以看多少页?
②小林看一本故事书,3天看了24页.照这样计算,全书128页,多少天可以看完?
2.在正确的算式后面画“√”,并说出为什么.
①小明5分钟走300米,照这样的速度,他家离学校720米,要走多少分钟?
A.300 ÷ 5 × 720 B.720 ÷(300 ÷ 5)
C.720 ÷ 5 ÷ 300 D.720 ÷ 300 ÷ 5
②小明5分钟走300米,照这样的速度,他从家到学校要走 15分钟,他家离学校有多少米?
A.300 × 5 × 15 B.300 ×(15 ÷ 5) C.300 ÷ 5 × 1
5 (3)用不同的方法解答下面的应用题。
某食堂4天用大米800千克,照这样计算,1600千克大米够吃几天?
四、课堂小结,质疑问难.
这节课学习的是什么?应用题的结构有什么特点?(先求出一份数是多少)解题的思路是什么?解题时应该注意什么问题?同学们还有不明白的问题吗?
五、布置作业.
1.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,12个同学一共可以糊多少个纸盒?
2.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,要糊154个纸盒需要多少个同学?
教学反思:
“归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
一种类型是求出单位数量是多少后,再求几个这样的单位数量是多少;第二种类型是求出单位数量是多少后,再求有几个这样的单位。在教学这种应用题时,小标题只要求同学口述,不必写出来。通过例题,使同学弄清怎样利用线段图把已知条件和问题表示出来。在第五册是老师和同学一起利用线段图分析数量关系,这里开始训练同学独立画线段图,为今后借助线段图这种直观手段进一步学习更复杂的应用题打下基础。根据归一题的特点,用两条线段表示较清楚。如第一题,第一条线段先表示出3个书架一共用75元。第二条线段再表示5个书架用多少元。两条线段中,要用同样长的线段表示每个书架的单价。教材中突出引导同学想,要求5个书架用多少元要先算什么,弄清解答归一题的关键是先求出单位数量(在这里具体地说是单价)。例8先分步列式解答,然后再列综合 算式解答。这是为了能跟线段图配合,便于同学分析数量关系。以后应使同学既会用分步列式解答,又会用综合算式解答。但同学做题时除了有指定要求的以外,不限制同学必需用哪一种方法解答。
第二题仍是买书架的问题,以便于同第一题的数量关系和解法进行比较。通过线段图可以清楚地看出前两个条件完全相同,只是第三个条件和问题不同。因此解答这种 应用题的关键也是先求出单位数量(单价)。这样就可以使同学更好地掌握这种题的数量关系和解答方法。在做完两道题之后,引导同学对两个例题进行比较,找出它们的 一起点,使同学弄清它们的前两个条件相同,明确解题的关键都是先求出单位数量。
在“做一做”里,让同学仿照例题的解答方法独立完成,使同学熟悉这种应用题的数量关系。
为了突出解答两种归一题的第一步都要先算出“单位数量”,教材的编排注意把两种题对比出现(如第7、9、10题)。第8题通过表格形式 渗透函数思想,使同学通过解答初步体会到路程是随着时间的变化而变化的。另外,还注意带着复习已学的两步应用题、口算以和混合运算等内容。 “归一问题”实际上是数量间成正比例关系的问题。这种问题通常用算术方法解答比较简单。同学掌握了算术解法,可以巩固前面学过的常见数量关系,又为以后学习比例、函数打下初步基础,也为以后学习较复杂的归一问题做了准备。归一问题是在除法简单应用题的基础上发展起来的。关键是先用除法求出“单位数量”是多少,然后把它作为固定不变的数量(题里一般都说明“照这样计算”),进行推算。
比的应用教学设计13
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级下册P99例1连乘应用题
二、教学准备
课前学生调查本班或者其它各个班级一天丢弃塑料袋个数情况。 多媒体课件、实物投影
三、教学目标与策略选择
本课是在学生学习了乘法的含义、两位数乘两位数、能初步用乘法解决简单生活问题的基础上进行教学的。教材的编排重视学生解决问题能力的培养,注意体现解决问题策略的多样化。因此,本课的教学设计,我着重从以下两方面进行思考与探索:
1.放手让学生主动探索解决问题的方法。学生在二年级学习时,已经会用表内乘、除法以及加、减法解决简单两步计算的实际问题。本课所要探索的两步计算解决的实际问题,选材范围和提供的信息数据范围都扩大了。教学时,力求充分调动学生的学习经验和生活经验,采用独立尝试、讨论等方式,让学生主动探索解决问题的方法。在教学过程中,让学生已掌握的知识技能对解决新问题产生积极的影响,体现学生学习的自主性。
2.注意培养学生多角度观察问题,解决问题的能力。本课中我创设了丰富的解决问题的资源,教学时立足于让学生自主收集、理解数学信息,寻找解决问题的`方法,注意有意识地引导学生从不同角度分析信息、寻找方法,对于学生合乎情理的阐述,给予积极鼓励,激发学生探索的欲望,并使学生逐步形成从多角度观察问题的习惯,逐步提高解决问题的能力。
教学目标:
1、让学生经历发现问题、提出问题、解决问题的过程,学会用连乘的方法解决相关生活问题。
2、通过解决具体问题,培养学生自主获取信息和解决问题的能力,初步了解同一问题可以有不同的解决方法。
3、感受数学在日常生活中的应用,激发学生学习兴趣。 教学重点:学会用连乘的方法解决相关问题。
教学难点:主动获取信息,运用数学知识,解决相关生活问题。
四、教学流程设计及意图
五、教学片段实录
师:课前同学们都做了调查,谁来汇报一下我们这样一个班级一天大约丢弃多少个塑料袋?
(学生汇报,教师依次板书:12个、11个、15个、12个、12个??与学生达成共识后选用12个,课件出示:一个班级每天丢弃12个塑料袋)
师:那么我们整座教学楼每天一共丢弃多少个塑料袋呢?瞧,这就是我们的教学楼(课件动态演示:教学楼有3层,每层有4个教室),请同学们仔细观察,你得到了哪些信息?
生1:我知道了我们的教学楼有3层。(课件出示定格图片) 生2:我看到二楼有4个班级。
师:那你说一楼和三楼会有几个班级呢? 生2:也是4个。 师:我们可以怎么说?
生3:每层都有4个班级。(课件出示定格图片)。
(这时课件出现完整的题目:教学楼有3层,每层有4个班级,一个班级每天丢弃12个塑料袋,整座教学楼每天一共丢弃多少个塑料袋?)
师:现在你有办法解决刚才的问题了吗?请大家先独立观察思考,如果遇到困难可以与小组内的伙伴或者和老师交流。
(留给学生充足的思考与讨论的时间)
师:哪个小组愿意上台来展示一下你们的方法,并给大家分析分析。 生1;我们小组的算式是3╳4╳12,因为教学楼有3层,每层4个班级,3╳4就是一共有多少个班级,再乘以12就是教学楼每天一共丢弃多少个塑料袋?
师:哪个小组的方法与他们相同?你们又是怎样想的?
生2:我们的算式是4╳3╳12,意思和他们一样,也是先求教学楼一共有多少个班级,再求每天一共丢弃多少个塑料袋。
师(向其他学生):你们明白他们的意思了吗?看来他们表达得非常清楚,接下来汇报的同学也该象他们那样组织好自己的语言,让大家一听就明白,好吗?
生3:我们小组认为也可以这样列式12╳4╳3,先算出一层每天丢弃多少个塑料袋,再算3层每天一共丢弃多少个塑料袋。
师:哪个小组的方法和他们一样?
(请方法相同的小组再叙述分析思考方法,其他学生评议。) 生4:我们还有一种方法,算式是12╳3╳4?? 师:能说说你们是怎样分析理解的吗?
比的应用教学设计14
教学目标:
1、掌握工程问题的结构特征和解答方法,并能应用于解决实际问题,工程问题应用题教学设计。
2、培养学生的观察、分析及综合概括能力及抽象思维能力。
重点:工程问题的结构特征。
难点:数量之间的对应关系。
一、激趣引入
1、谈话。张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?猜一猜。
2、到底哪位同学猜得正确,通过今天这堂课的学习,我们就能解决这个问题。所以,今天我们继续学习应用题。(板书:应用题)
二、类比迁移
1、出示准备。
修建一条公路长300米,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?
(1)指名板演,集体练习
(2)反馈、交流。
2、把300米改为600米、900米、1200米、若干米,分组计算。
(1)通过刚才的计算,我们发现什么变了,什么没有变?为什么?
(2)再观察一下,以上算式都是根据哪个数量关系来进行计算的呢?
(3)如果总米数没有,但还是求两队合修需多少天完成,又该怎么样列式计算呢?
三、探索新知
1、出示例题:修建一条公路长,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?
(1)比较。
(2)思考:
A、这条公路的全长不知道怎么办?
B、甲队每天修了这条公路的几分之几?乙队呢?
C、(+)表示什么?
D、根据什么数量关系解答这类应用题的?
2、再比较:例题和准备题在解答方法上有什么相同点?有什么不同点?
3、归纳:象这类工作总量没有直接告诉我们,可用单位"1"表示,用表示工作交率,解答思路与工作问题一样,象这种分数应用题,教案《工程问题应用题教学设计》。我们把它叫做"工程问题"(完整板书)。
4、把工作总量看作"2、3"行不行?分组计算。发现计算结果是一样的。但为了计算简便,工程问题应用题中,我们常把工作总量看作单位"1"。
四、巩固性练习
第一层次:试一试。
一项工程,由甲工程队单独施工,需8天完成;由乙工程队单独施工,需12天完成。两队共同施工,需要多少天完成?
(1)指名板演,集体练习。
(2)据式说理。
(3)改变条件和问题。
两队合作4天后,完成这项工程的几分之几?
还剩下几分之几?
第二层次:
(1)车站有货物48吨,用甲车运6小时可以完成,用乙车运4小时可以完成。用两种车同时运多少小时可以运完?
下列算式正确的是。
48÷(48÷6+48÷4)
48÷(+)
1÷(+)
(2)只列式不计算
加工一批零件,甲单独加工8小时完成,乙单独加工10小时完成。
(1)甲单独加工,每小时完成总工作量的。
(2)乙单独加工,每小时完成总工作量的'。
(3)甲、乙合做,1小时完成了总工作量的。
(4)甲、乙合做,3小时完成了总工作量的。
(5)甲、乙合做3小时,还剩下总工作量的。
(6)这批零件,甲、乙合做小时完成。
(7)两人合打天才能完成这份稿件的。
第三层次:
工程问题不只限于上述三种量之间的关系,也适用于其他某些量之间的关系。
(1)一辆汽车从甲地开到乙地需要6小时,另一辆汽车从乙地开到甲地需要5小时。两车同时从两地相向工出,经过几小时两车相遇?
(2)张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?
五、课堂小结
1、这节课,我们主要学习了什么内容?
2、工程问题的特点是什么?
3、解这类题的关键是什么?
六、提高练习
(1)生产一批零件,甲单独做15天可以完成,由乙单独做12天可以完成,两单独做10天可以完成,如果三人合做,多少天可以完成?
(2)一项工作,甲乙两人合做12天可以完成,由甲单独做20天可以完成,由乙单独做,多少天可以完成?
比的应用教学设计15
教学目的
1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
2、使学生加强了解列一元一次方程解应用题的方法步骤。
教学分析
重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。
难点:寻找相遇问题中的相等关系。
突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。
教学过程
一、复习
1、列方程解应用题的一般步骤是什么?
2、路程、速度、时间的'关系是什么?
3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。
二、新授
1、引入
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:
慢车行程+快车行程=两站路程
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450
(2)再分析快车先开了30分两车相向而行的情形。
同样画出图形,并按课本讲解,(见教材P217~218)
由学生完成求解过程,并作出答案。
解:略
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。
(2)不是同时出发的,要注意时间的关系。
三、练习
P220练习:1,2。
四、小结
1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
2、相向而行的相遇问题中,要注意时间的关系。
五、作业
1、P222 4.4A:13,14,15。
2、基础训练:同步练习3。
【比的应用教学设计】相关文章:
比的应用教学设计12-11
比的应用教学设计10-12
比应用教学设计05-08
《比的应用》教学设计05-01
比的应用教学设计10-12
《比的应用》教学设计与教学反思06-16
数学《比的应用》教学设计03-07
《比例的应用》教学设计04-21
比的应用优秀教学设计06-12
《比的应用》教学设计13篇06-10