数学《比的应用》教学设计

时间:2024-08-01 08:19:13 教学设计 我要投稿

数学《比的应用》教学设计

  作为一名为他人授业解惑的教育工作者,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写呢?以下是小编帮大家整理的数学《比的应用》教学设计,欢迎阅读与收藏。

数学《比的应用》教学设计

数学《比的应用》教学设计1

  教学目标

  1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

  2.掌握分数乘、除法应用题的分析、解答方法.

  教学重点

  训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

  教学难点

  准确判断单位1,正确地解答分数应用题.

  教学步骤

  一、铺垫孕伏

  (一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

  (二)判断单位1.

  1.鹅的只数是鸭的 .

  2.甲的 是乙.

  3.乙是甲的 .

  4.男生人数的 相当于女生.

  5.小齿轮的齿数占大齿轮的 .

  (三)列式计算.

  1.4是12的几分之几?

  2.12的 是多少?

  3.一个数的 是4,求这个数.

  二、探究新知

  (一)教学例3第(1)题

  池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  1.读题并找出已知条件和问题

  2.提问:应把谁看作单位1?是根据题中哪句话判断的?

  3.画图.

  4.列式解答

  答:鹅的只数是鸭的 .

  (二)教学例3第(2)、(3)题.

  池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

  1.画图理解题意

  2.列式解答

  3.集体订正

  (三)小结

  这三道题有什么相同点和不同点?解题关键是什么?

  1.结构上

  相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

  不同点:已知和未知不一样.

  2.解题思路上

  相同点:都要首先弄清谁作标准,把谁看作单位1;

  不同点:根据已知、未知的变化,确定不同的解答方法.

  解题关键是:正确分析题中的数量关系,明确谁作单位1.

  教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

  答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

  三、全课小结

  这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

  四、巩固练习

  (一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

  (二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

  (三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

  五、课后作业

  (一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的`几倍?

  (三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

  六、板书设计

  分数乘、除法应用题对比

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  412=

  答:鹅的只数是鸭的 .

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12 =4(只)

  答:池塘里有4只鹅.

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4 =12(只)

  答:池塘里有12只鸭.

数学《比的应用》教学设计2

  教学目标:

  知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

  过程与方法:培养学生运用知识进行分析、推理等思维能力。

  情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:

  掌握按比例分配应用题的结构特点和解题思路。

  教学难点:

  正确分析解答按比例分配应用题。

  教法:

  启发引导法,演示法学法:观察比较,合作交流。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习解决下面各题化简

  27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。

  二、情景导入学生自由讨论

  1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?

  2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

  三、新授新知教学例2

  (1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?

  (2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)

  (3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的`体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)

  (4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)

  水的体积:500×4=400(ml)

  答:稀释液100ml,水400ml。

  这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

  师:把我们学过的比转化成分率,怎样来做?

  生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5。可以写成:浓缩液的体积:500×1/5=100(ml)

  水的体积:500×4/5=400(ml)

  答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。

  四、巩固提高(幻灯片出示)

  做一做第1、2题,学生独立完成,抽生板演,集体讲评。

  五、全课总结

  今天我们学到了什么?

  六、家庭作业

  教材第50页,练习十二1—3题。

  教学反思:

  本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

数学《比的应用》教学设计3

  教材与学情:

  解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

  信息论原理:

  将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

  教学目标

  ⒈认知目标:

  ⑴懂得常见名词(如仰角、俯角)的意义

  ⑵能正确理解题意,将实际问题转化为数学

  ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

  ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

  ⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

  教学重点、难点:

  重点:利用解直角三角形来解决一些实际问题

  难点:正确理解题意,将实际问题转化为数学问题。

  信息优化策略:

  ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

  ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

  ⑶重视学法指导,以加速教学效绩信息的顺利体现。

  教学媒体:

  投影仪、教具(一个锐角三角形,可变换图2-图7)

  高潮设计:

  1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

  2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

  教学过程

  一、复习引入,输入并贮存信息

  1.提问:如图,在Rt△ABC中,∠C=90°。

  ⑴三边a、b、c有什么关系?

  ⑵两锐角∠A、∠B有怎样的关系?

  ⑶边与角之间有怎样的关系?

  2.提问:解直角三角形应具备怎样的条件:

  注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

  二、实例讲解,处理信息:

  例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

  ⑴引导学生将实际问题转化为数学问题。

  ⑵分析:求AB可以解Rt△ABD和

  Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

  ⑶解题过程,学生练习。

  ⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

  例2.(投影)在水平线上一点C,测得山顶A的.仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

  分析:

  ⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

  ⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

  解:设山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、归纳总结,优化信息

  例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

  四、变式训练,强化信息

  (投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

  练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

  练习3:在塔PQ的正西方向A点测得顶端P的

  仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

  教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

  ⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

  ⑵引导学生归纳三个练习题的等量关系:

  练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

  五、作业布置,反馈信息

  《几何》第三册P57第10题,P58第4题。

  板书设计:

  解直角三角形的应用

  例1已知:………例2已知:………小结:………

  求:………求:………

  解:………解:………

  练习1已知:………练习2已知:………练习3已知:………

  求:………求:………求:………

  解:………解:………解:………

数学《比的应用》教学设计4

  教学内容:

  教科书77页例2。

  教学目的:

  1.学生通过观察、探究、研讨等活动,使学生掌握“比较两数差与倍数关系”的两步应用题的结构,并学会分析解答此种应用题,并且进一步巩固含有三个已知条件的两步应用题的结构,掌握该应用题的分析方法,并会分步列式解答。

  ⒉ 初步培养学生主动探索、独立获取知识的能力,提高学生分析处理信息和解决简单实际问题的能力。

  ⒊ 渗透数学来自于生活实践的思想,培养学生初步的数学应用意识和实践能力。

  教学重点:理解和分析比较两数差与倍数关系的'两步应用题的数量关系。

  教学难点:正确找到中间问题。

  教具、学具准备:

  多媒体课件一套,每学生各准备一条红、黄、紫色纸条。

  教学过程:

  一、 铺垫孕伏

  准备题:商店有红气球8个,花气球的个数是红气球的3倍。花气球有多少个?(学生读题后互相分析,独立解答。)

  解题思路:根据“花气球的个数是红气球的3倍”知道以红气球的个数为标准,花气球的个数有3个红气球那么多,所以求花气球多少个用乘法计算8×3=24(个)。

  二、 创设情景,提出问题

  ⒈ 教师描述情景

  10月1日是国庆节,商店用三种颜色的气球装点购物大厅,有黄色、红色、花色的。其中黄色的气球有17个,红气球比黄气球少9个,花气球是红气球的3倍。

  ⒉ 根据提供的信息,学生编数学问题。可能出现以下问题。

  ⑴商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的3倍,花气球多少个?(例2)

  ⑵商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的3倍,三种气球一共多少个?(此题以后再研究)

  ……

  三、自主探索,研究问题

  1.学习例2。

  (3) 学生读题,读后回答已知条件和问题分别是什么?

  (4) 独立试算,遇到问题小组内讨论解决。

  (5) 学生汇报交流,集体研讨辩论,学生可能会用彩色纸条(或画线段图)的方法来分析

  这道题,也可能用语言叙述。具体的思维过程可能是:

  方法1:根据“商店有黄气球17个”和“红气球比黄气球少9个”这两个条件就可以求出红气球有17—9=8(个),再根据“花气球是红气球的3倍”就可以求出花气球有8×3=24(个)。

  方法2:要想求花气球多少个,根据“花气球是红气球的3倍”就必须知道红气球有多少个,红气球的个数未知,根据”商店有黄气球17个”和“红气球比黄气球少9个”两个条件可以求出红气球的个数:17—9=8(个),再求花气球的个数:8×3=24(个)。

  ⑷教师小结:教师边口述题意,边用媒体依次显示线段图,结合线段图重点说明这道题的分析解答方法,并揭示课题。

数学《比的应用》教学设计5

  【教材解读】

  自读:例5教学面积公式的应用。求出学生最熟悉的数学书封面的面积大小,并用数学书封面的面积去测量课桌的面积。

  做一做,用学生身上的尺子来测量长度,进而求出教室的面积。(反思:知道了这样做,要再深入问:为什么要这样做?)

  细读:例5的编排意图与前面“做一做”的编排意图基本相同。在计算数学书封面面积后,又安排利用计算结果估计桌面面积的活动,一方面体现了上面计算的价值;另一方面提示,可用自己熟悉的物品面积作为“非标准”的面积单位,估计其他面积,从而发展学生的估测意识与能力。

  “做一做”利用学生自己的“步长”作为单位,测量教室的长和宽,并估测教室面积。目的是使学生进一步了解自己,用自己随身携带的“标尺”,随时随地地认识更多的事物,积累更多的实践经验,发展学生的估测意识与估测能力。

  【教学目标】

  使学生进一步理解面积公式的'含义;

  使学生进一步掌握面积公式的计算;

  【教学流程】

  一、面积公式的复习

  1.出示:练习十五的第1题。

  学生独立计算

  如果满铺是这样的 如果半铺又是怎样的 你会选择铺吗?

  2.完成练习第2题

  出示:两个信息,学生提出问题?

  二、教学例5

  1.出示题目

  读题计算

  468平方厘米到底有多大呢?

  我们熟悉的数学书封面是500平方厘米,估计一下我们的课桌面积大约有多少?

  师:你是怎么估测的呢?

  小结:我们可以用尺子量出长和宽计算出桌面面积的大小;但当没有尺子时,可以用已知的数学书封面面积来测量桌面面积。

  2.做一做

  如果没有尺子,如何测量我们教室的面积呢?

  生预:用课本面积;

  生预:用课桌面积;

  生预:用身上的尺子。(脚步的“尺子”)

  小结:用自己随身携带的“标尺”,随时随地地认识更多的事物。

  3.目测实物面积和测量计算面积

  黑板的面积;长方形的面积;地面方格的面积。

  猜测 依据 测量。

  三、巩固练习

  1.练习第7题,面积和周长(练习本上)

  2.第9题,知道周长,如何求面积?

  3.第8题,选择。1.全部的面积;2.正方形的面积;3.剩下的面积

  四、拓展题

  练习第10题:面积减去后,面积相等,周长变了。

数学《比的应用》教学设计6

  教学目的

  1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的。

  2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力。

  3.培养学生认真负责的态度和良好的学习习惯。

  教学重点

  能够掌握复合应用题的结构,正确解答复合应用题。

  教学难点

  使学生掌握复合应用题的关系。

  教学过程

  一、基本训练。

  1.口算。

  2.54 127+28 0.37+1.6 8816

  3.37+6.63 8.40.7 0.1258 1.02-0.43

  1.25+ 1 16

  2.要求下面的问题需要知道哪两个条件?

  (1)实际每天比原计划多种多少棵?

  (2)桃树的棵数是梨树棵数的'多少倍?

  (3)五年级平均每人捐款多少元?

  (4)这堆煤实际烧了多少天?

  (5)剩下的书还需要多少小时能够装订完?

  (6)小明几分钟可以从家走到学校?

  教师总结:

  应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键。

  二、归纳整理。

  揭示课题:这节课,我们复习复合应用题(板书课题)。

  (一)教学例2:

  a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米。实际比原计划每小时多走多少千米?

  b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米。实际比原计划平均每小时多走多少千米?

  c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程。实际比原计划平均每小时多走多少千米?

  1.指名读题,学生独立解答。(学生板演)

  2.小组讨论:这三道题都有什么联系?这三道题有什么区别?

  联系:这三道题说的是同一件事,要求的问题也相同,都是求实际比原计划平均每小时多走多少千米?要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数。

  区别:

  a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;

  b、实际每小时走的千米数是已知的。原计划每小时走的千米数是未知的,需要两步计算;

  c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算。

  3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题。

  4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的。在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止。

  5.检验应用题的方法。

  我们想知道此题目做的对不对,你有什么好办法吗?

  (1)按照题意进行计算;

  (2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意。

  三、巩固反馈。

  1.解答并且比较下面两道应用题,说说它们之间有什么区别?

  (1)时新手表厂原计划25天生产手表1000只,实际每天生产50只。实际比原计划提前几天完成任务?

  (2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务。实际每天生产手表多少只?

  2.判断:下面列式哪一种是正确的?

  (1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

  A:2100-24053B:(2100-240)3

  C:(2100-2405)3

  (2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?

  A:(2640-240)240B:2640(2403)

  C:(2640-240)(2403)

  (3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天,照这样计算,再耕13.6公顷棉田,一共需要用多少天?

  A:13.6(6.84)B:13.6(6.84)4

  C:(13.6+6.8)(6.84)

  (4)一个筑路队铺一段铁路,原计划每天铺路3.2千米,15天铺完,实际每天比原计划多铺路0.8千米,实际多少天能够铺完这段路?

  A:3.2150.8B:3.2 15(3.2-0.8)

  C:3.2 15(3.2+0.8)

  (5)某化工厂采用新技术后,每天用原料14吨。这样,原来用7天的原料,现在可以用10天。这个厂现在比过去每天节约多少吨原料?

  A:14710-14B:14107-14

  C:14-14107D:14-14710

  四、课堂总结。

  通过今天的学习你有什么收获?

  五、课后作业。

数学《比的应用》教学设计7

  教学内容:

  小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

  教学目标:

  1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:掌握按比例分配应用题的解题方法。

  教学难点:按比例分配应用题的实际应用。

  教学准备:自制多媒体课件。实物投影仪。

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的`比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

  (5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

  2、口答应用题

  六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

  口答:100÷2=50(平方米)

  提问:这是一道分配问题,分谁?(100平方米)

  怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

  1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

  小组汇报:

  (1)六年级的保洁区面积是二年级的 倍

  (2)二年级的保洁区面积是六年级的

  (3)六年级的保洁区面积占总面积的

  (4)二年级的保洁区面积占总面积的

  ……

  3、课件演示

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

  方法一、3+2=5 100÷5=20(平方米)

  20×3=60(平方米) 20×2=40(平方米)

  方法二、3+2=5 100× =60(平方米)

  100×=40(平方米)

  ……

  5、这道题做得对不对呢?我们怎么检验?

  ①两个班级的面积相加,是否等于原来的总面积。

  ②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

  ……

  6、练习:

  如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

  学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

  (1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

  (2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

  (3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?

  (4)学生独立解答。

  (5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  8、小结:观察我们今天学习的按比例应用题有什么特点?

  三、开放运用,体验成功

  小明九月份共用去零花钱30元,具体用途及分配情况见下表:

  零花钱30

数学《比的应用》教学设计8

  本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

  一、教学目标

  1、综合运用平行四边形的五种判定方法和性质解决实际问题;

  2、进一步理解平行四边形的性质与判定的区别与联系;

  3、通过练习提高学生的逻辑思维能力以及分析问题的`能力。

  二、教学重难点

  重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

  难点:在应用中明晰性质与判定的区别与联系。

  三、教学方法

  通过简单,典型,针对性质和判定的应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。

  四、教学反思

  题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

数学《比的应用》教学设计9

  【教学内容】

  义务教育课程标准实验教科书《数学》(人教版六年级 下册)教材P59―60内容。

  【教学目标】

  1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

  2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

  3. 发展学生的应用意识和实践能力。

  【教学重点】运用正反比例解决实际问题。

  【教学难点】正确判断两种量成什么比例。

  【教材分析】

  解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数

  列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.

  【学情分析】

  解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。学生对用比例解决问题已经有了一定的`知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

  【设计理念】

  利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点.正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣.首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答.这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

  通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.

比例应用题数学教案教学设计

【数学《比的应用》教学设计】相关文章:

数学比的应用教学设计(精选12篇)05-21

比应用教学设计05-08

比的应用教学设计12-11

比的应用教学设计10-12

《比的应用》教学设计05-01

比的应用教学设计10-12

《比的应用》教学设计与教学反思06-16

《比例的应用》教学设计04-21

比的应用优秀教学设计06-12