《植树问题》教学设计

时间:2024-12-09 08:59:27 毅霖 教学设计 我要投稿

《植树问题》教学设计(精选10篇)

  在教学工作者实际的教学活动中,就不得不需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的《植树问题》教学设计,仅供参考,大家一起来看看吧。

《植树问题》教学设计(精选10篇)

  《植树问题》教学设计 1

  教材内容:

  人教版五年级上册数学广角植树问题P106页例1

  教学目标:

  1、通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。

  3、通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。

  教学重点:

  运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。

  教学难点:

  “一一对应思想”的运用

  教学准备:

  课件、10根小棒、尺子、白纸等。

  【教学过程】:

  一、创设情境引入

  1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)

  师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?

  生:5

  师:5是什么?

  生:5个手指

  师:就是手指数,那还能发现哪个数?

  生:4个空隙

  师:你能指给大家看看吗?

  师:像这样每两个手指之间的`空隙,在数学上叫做间隔。(板书:间隔)

  师:4根手指几个间隔?三根呢?

  2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的数学问题:植树问题。(板书课题)

  二、发现规律

  1、课件出示:同学们要在全长500米长的小路的一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?

  (1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)

  (2)那么我们需要种多少棵树呢?

  (3)请同学猜一猜、算一算

  预设:100÷5=20?100÷5+1=21?100÷5-1=19

  (4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)

  三、建立数学模型

  1、化繁为简

  师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。

  出示活动要求:

  (1)结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。

  (2)完成后,在小组内说一说你的想法。

  2、全班交流,完成表格。

  3、引导总结规律,完成板书:

  小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?

  板书:两端都栽:全长÷间隔长=间隔数

  间隔数+1=棵树

  棵数-1=间隔树

  师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?

  预设:40÷5=8?8+1=9(解释8表示间隔数)

  4、回归应用

  (1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?

  (2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?

  5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。

  四、联系生活,解决问题

  1、出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?

  学生审题后独立完成。

  交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?

  师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。

  2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?

  3、同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?

  五、课堂总结:

  这节课学了什么?有什么收获?

  六、拓展延伸:

  出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?

  预设:只种了一端

  师:现在间隔数和棵数有什么关系呢?

  再出示一个房子,师:现在还是只种一端吗?

  预设:两端都不种

  师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。

  板书设计:

  植树问题:

  两端都栽:全长÷间隔长=间隔数

  间隔数+1=棵树

  棵数-1=间隔树

  《植树问题》教学设计 2

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角”第117—118页。

  二、教材目标:

  1、通过生活中的事例,知道“植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2、通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3、能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点

  引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点

  理解间隔数与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备

  学习单、多媒体课件、小树和小路模型。

  六、教学过程:

  (一)问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1、队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的'关系,再次对应“间隔数+1”

  并出示课题。

  2、植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1”。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1、选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”()

  (2)衣服上的纽扣()

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声()

  A、两端都种;B、只种一端;C、两端不种。

  2、广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要秒。

  3、小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。()

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。()

  4、学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

  《植树问题》教学设计 3

  一、教学目标:

  1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

  3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  二、教学重点:

  理解植树问题棵树与间隔数之间的关系。

  教学难点:

  会应用植树问题的模型灵活解决一些相关的实际问题。

  三、教具准备:

  多媒体课件和未完成的表格。

  四、教学过程:

  课前准备:(多媒体放映牛顿和苹果的故事)

  师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

  谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

  (一)、提出问题、引发思考、探究规律。

  1、手引发的思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、整体感知、确定研究方向。

  课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

  展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

  理解:“间隔”、“间隔数”、“棵数”。

  (二)、小组合作,探究规律

  1、提出问题。

  课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

  学生的猜测可能有不同的结果:1000;1001;1002)

  2、自主探究。

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  3、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去,1000个间隔就有1000棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  4、总结归纳。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的'变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  5、总结规律。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数棵数-1=间隔数

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  (三)、点击生活

  ①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结()

  ②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

  ③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

  ④(求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

  (四)、拓展延伸。

  (课件出示世界著名数学问题)

  师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

  早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)

  十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)

  进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)

  (结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

  《植树问题》教学设计 4

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。

  教学目标:

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一、创设情境,导入新课

  1、小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2、导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二、新课探究:

  1、出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

  2、分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:

  (1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

  3、汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

  三、课堂练习:

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:

  这节课我们学习了什么资料?你还有什么疑问?(植树问题的`三种状况)

  五、板书设计:

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

  《植树问题》教学设计 5

  教学目标:

  1、认识棵数,知道什么是间隔数、。

  2、理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。

  3、能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。

  教学重点:

  探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题

  教学难点:

  灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题

  导学指要:

  1、通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。

  2、通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。

  3、学习植树问题在生活中的运用。

  教具:课件一套学具9套自学提示卡一张

  预设教学流程:

  一、创设情境生成学习目标

  1、教学“间隔”定义

  师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?

  生:好

  师生问好

  师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。

  师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?

  生:……………………

  师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?

  生:……

  师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?

  生:……手指比手指缝多1,手指缝比手指少1。

  师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。

  板书:间隔数

  2、在生活中找间隔

  师:和你的同桌说说:什么是间隔数?

  生:……

  师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?

  生:……

  师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?

  生:……

  师:今天将利用数学知识来解决“植树问题”。

  板书课题:植树问题

  二、探究规律实现目标

  1、多媒体出示学校操场

  A师:这里是哪里?

  学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……

  师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?

  师:什么是两端都要栽?

  生:……

  (此环节要全方位理解题意)

  师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽

  师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?

  B生动笔算

  师:谁来说说你是怎样列式的?

  生:……

  板书:100÷5=2020+1=21(棵)

  100÷5=2020+2=22(棵)

  100÷5=2020+1=21(棵)

  21x2=42棵

  师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧

  请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?

  C学生小组合作,教师巡视,并有目的的.选取学生

  D在实物投影上展示学生的作品

  学生展示并板演

  用画线段的方法解决的棵数与间隔数的关系

  反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?

  2、再次课件演示得出结论

  那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?

  棵数=间隔数+1

  师小结:

  你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1

  3、应用规律解决问题

  师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?

  在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?

  生:……………

  师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?

  《植树问题》教学设计 6

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一起弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)

  二、探究规律,解决问题。

  找出两端都种树的规律:

  植树问题情景1,师出示:例:同学们在全长100米的'小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,

  棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1、排列在同一条直线上的16棵树之间有()个间隔。

  2、从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

  3、在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

  《植树问题》教学设计 7

  一、教学内容

  教科书P117例1

  二、教学目标

  1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

  2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

  3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

  三、教学重点、难点

  1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

  2、难点:利用规律来解决生活中的实际问题。

  四、教学准备

  小棒、课件、练习本、表格

  五、教学过程

  (一)创设情境,引入学习

  1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

  (预设生:有5根手指生:有4个空)

  像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

  2、生活中很多地方也存在着间隔,你能找到吗?

  (预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人

  3、老师也收集了一些(播放课件)

  过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

  (二)合作探究“两端都栽”的规律

  1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

  谁能响亮的读题?

  ②从题中你了解到了哪些数学信息?

  预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁

  ③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

  (预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))

  还有不一样的吗?也上来写写

  说一说你的想法

  ④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

  指名2人说(板书总长÷间隔长=间隔数)齐读1次

  2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

  (预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种

  生3:画线段图来验证一下)

  方法有很多,但是画线段图是最常见、最一般的方法。

  ②你打算怎么画,能介绍一下吗?

  生介绍,师板画

  介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)

  通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))

  3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

  两端都栽的.情况下

  同桌合作完成表格第2、3两行。

  ②展示1个学生的作品,课件出示

  观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?

  指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次

  4、验证规律

  ①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?

  ②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

  ③同桌再次合作,教师巡视

  ④汇报,教师记录结果

  ⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

  700个间隔,几棵树?1000棵数几个间隔?

  (三)练习生活,拓展应用

  生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

  1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解

  2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

  3、你看过钟表吗?

  你听——当当,这是几时;当当当这是几时,有几个间隔?

  在钟声里也有数学问题,一起去看看吧!

  出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

  (四)课堂小结,留下悬念

  1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

  2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

  《植树问题》教学设计 8

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:

  应用植树问题的模型解决相关的实际问题。

  教学难点:

  理解棵树与间隔数之间的关系。

  教学准备:

  课件

  教学过程:

  一、课前谈话

  1、手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2、导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1、创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2、简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一起来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的.各种现象糅合在一起,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1、创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2、设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3、反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4、师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1、用手势表达植树问题的模型并考察同桌的掌握状况。

  2、透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

  《植树问题》教学设计 9

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的'图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

  《植树问题》教学设计 10

  教学内容:

  人教版四年级下册《数学广角——植树问题》例一及相应练习

  教材分析:

  本册《数学广角》主要渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)

  设计理念:

  自主探索,凸显学生个性;合作探究,构建和谐课堂。

  教学目标:

  一、知识与技能性:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3、能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1、进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3、培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观:

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重点:

  从实际问题中发现植树问题(两端都种)的数学模型。

  教学难点:

  灵活运用植树问题(两端都种)的数量关系,正确解答生活中的实际问题。

  教具准备:

  课件、纸条、表格、直尺等。

  教学过程:

  一、课前交流,激趣导入

  1、活动交流

  师:同学们,我知道你们都聪明、好学、上进。今天我很高兴能与大家一起探索数的奥妙,你们欢迎吗?

  谢谢你们的掌声。下面请大家伸出你们懂事的双手,让老师看一看,可以吗?

  大家认真地看一看,将来我们就是要凭借这一双手,创造我们的幸福生活。

  同样也是这一双手,还藏着很多数学奥秘,你们想知道吗?

  2、教学“间隔”含义

  师:看着老师举起的这只右手,你们看见了几个手指?

  学生齐说:“5个手指头”。

  师:很好。你们再看看,这5个手指间有几个空格?

  生:4个

  师:很好!在数学上我们把这样的“空格”叫做间隔(板书)。

  大家再仔细观察自己的手,5个手指之间有4个间隔。那么,4个手指间有几个间隔呢?3个手指,2个手指呢?同桌互相说一说。

  师:你们发现手指数与间隔数的规律了吗?谁能勇敢地站起来告诉老师吗?

  答案:手指的个数比间隔数多“1”或间隔数比手指少1。

  3、导入课题

  实际生活中的“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔。

  今天,我们就以植树为例,一起来探索数学里间隔的奥秘。(板书课题:植树问题)

  课前导入这一部分,学生配合的比较好。而且学生之间发现“手指数与间隔数之间的联系”,这是非常好的,但是,我在这觉得这样是不是有点多余。可是我又觉得这里,让学生初步的感知这一数量之间的关系,其实是一个铺垫作用。想想也有此理。

  二、动手操作,初步感知

  1、创设情景(课件出示)

  师:我们学校为了进一步美化校园环境,准备在学校门口这条路的一

  边种上白桦树。

  师:你们想不想看看学校打算怎么种吗?我们一起来看看具体要求吧!

  2、理解题意

  [出示要求]:我们学校准备在学校门口长100米的这条路一边种上白桦树,每隔5米栽一棵(两端都栽),请问一共需要多少棵树苗?

  师:我想请一个同学来读一读,从这份要求,你能获得哪些信息?同学们可以小声交流一下,然后把你们交流的结果向全班同学汇报。(师根据学生汇报板书:总长、间距、间隔数、棵树)。

  师:两端都栽你们怎么认为的呢?

  指名说一说,然后师实物演示。

  师:每隔5米是什么意思?你能用自己理解的方式来告诉你的同学吗?

  教师在学生汇报的基础上归纳小结。(两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的'间距是5米)

  师:好,你们能帮帮老师算一算,学校需要准备多少棵树苗呢?

  3、自主探究

  生:自由做题

  师:指点几个学生上台板演。同学们做完了吗?我们看同样的要求却出现了不同的答案。你们同意哪个呢?那学校究竟该买多少棵树苗呢?是20还是21……

  这个环节,不知是不是学生基础比较差,还是……我从学生的小组中发现只有一种答案没有别的,别的就是很离谱的过程。这里学生只知道100/5=20(棵)这一答案。这样使我在讲时就有点难。

  师:这样吧同学们以小组为单位,听清楚要求:利用你们准备的学具摆一摆。也可以用一条线段来代表100米的小路,用你们喜欢的图案表示树。把你们小组的想法在纸上画一画。(小组活动)

  4、汇报交流,展示思路

  师:同学们,你们探究出结果了吗?

  生:画线段的方法

  生:摆火柴的方法……

  师:初步推出棵数=间隔数+1(板书棵数)

  这里学生们有一部分的学生知道通过摆一摆的方法去探究出实际需要21棵。但是没有学生知道用线段来画,许多的学生不知所措。不知道怎么做。我在想是不是我讲解不清楚,可是有一部分的学生可以通过摆一摆得出这个规律呀。这可能对学生了解不够深吧。也许该用更简单的方法去授课。用20米长的小路,也许会有更好点的效果。

  三、合作探究,发现规律。

  1、探索规律

  学生汇报,师也同时在黑板具体教学摆一摆及画线段图的方法。进一步理解间距、间隔数

  师:学生都表现的不错,我们再来看一下这种规律发现过程。这是一条100米的小路,学校要求两端都栽,我先在一头栽上一棵树,隔5米栽一棵,隔5米栽一棵。现在是几棵树,几个间隔,现在呢?这又是几棵树,几个间隔……。好了,我不栽了。请同学们想一想6棵树几个间隔,8棵树几个间隔,10棵树几个间隔,100棵树几个间隔,那15个间隔几棵树,18个间隔几棵树,那20个间隔几棵树。

  师:从中你们发现了什么规律?

  生:(指名回答,要强调是在什么情况下。)棵数比间隔数多1,间隔数比棵数少1。

  师小结:两端都栽的情况下:“间隔数+1=棵数”

  “间隔数=棵数-1”(板书)

  请同学自己读一读。

  师:同学们,在两端都栽的情况下,棵数与间隔数有什么关系?

  请同学错的上台订正。

  师:同学们,我们在刚才探讨了在100米的小路上,两端都栽,每隔5米栽一棵,需要21棵树苗。我代表学校谢谢你们。

  2、运用规律

  师:如果让你来设计我们学校这条小路的植树方案,还是这100米长的小路的一边(两端都栽)还可以每隔几米栽一棵?(整米数)

  出示:表格。

  师:根据学生汇报,完成表格。这一部分可能是多余的。我在授课时,发现这样填表格起不了什么大的作用。

  四、应用规律,解决问题。

  师:现在我们得用用这个规律来解决数学问题

  师:还是这条小路,假如每隔两米栽一棵,在两端都要栽的情况下,需要几棵树苗呢?请你们口答这题。

  师:假如现在这条小路延长到200米,还是每隔5米一棵(两端都栽),需要几棵树苗呢?

  师:如果我种了5棵树,每隔5米栽一棵,从第一棵到最后一棵全长多少米呢。

  师:真棒,我发现学生学的非常的认真!我们刚据探讨出来的规律就运用的这么好。老师真佩服大家。运用植树的规律不仅能解决植树的问题,还能解决我们生活的实际问题。其实在日常生活中,在我们的周围有很多类似于植树问题的事件,同学们你能列举一些这样的事例吗?(学生汇报后,师用课件展示生活中的事例图片。)

  师再出示:安装路灯、电线杆、设立车站、摆花盆、走楼梯、建楼房、排队做早操等等。

  五、提升思维,巩固练习

  师:看来,数学知识与我们的实际生活有很密切的联系,我们平时一定认真观察,多留心身边的事物。

  师:运用今天所学的知识我们可以解决生活中一些相关的实际问题。

  1、做一做

  在全长1000米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?

  2、想一想

  在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?

  3、猜一猜。

  甲、乙、丙谁说的对?

  有100人参加春游活动,这列队伍中如果每两人平均距离是1米,请问这列队伍全长多少米?

  甲说:100米

  乙说:99米

  丙说:101米

  六、质疑:学习到这里,同学们想一想有没有什么不明白的地方,有的可以提出来我们一起解决。

  七、归纳:(同学们学得真不错,让我们一起完成一首儿歌吧!)教学儿歌

  小树苗,栽一栽,

  两端都栽问题来,

  间数多1是棵数,

  棵数少1是间数,

  怎样求出间隔数?

  全长除以间长度。

  八、课堂小结,课外延伸

  师:同学们坐好了,这节课上同学们个个都表现得特别棒,积极思考,涌跃回答问题,这一却都给了我快乐,给了我鼓励,和同学们在一起我很幸福,你们快乐吗?那你又有什么收获呢?谁能说说。

  这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。

  板书:植树问题

  总长间距间隔数棵数

  20米5米45棵

  20÷5=44+1=5(棵)

  两端都要栽:间隔数+1=植树棵数

  间隔数=植树棵数-1

  间隔数=总长度÷间隔

  教学反思:

  不足之处

  一、设计基本可以,但任务没有完成。

  基本上没有讲练习,课前准备的练习都没有去练。因为没有时间。所有的时间都花在的探讨之中,所以时间不够。

  二、前松,好!后紧,乱!

  由于,前面时间把握不够好,时间大多数都花掉了,到了后面就很紧,由此而乱。在教学儿歌时就草草的收场了。

  我觉得这节课,自己还是比较满意的。我对自己说,又有一次大的进步。从无形中就提高了自己。我感谢这次的活动机会。在这节课的突破了重难点,学生能自己得出这个规律,我已很满足。在上课之前,我都担心突破不了。

【《植树问题》教学设计】相关文章:

植树问题教学设计09-07

《植树问题》教学设计05-07

“植树问题”的教学设计09-15

《植树问题》教学设计08-09

《植树问题》教学设计10-14

植树问题教学设计09-27

植树问题的教学设计09-23

人教版《植树问题》教学设计09-05

植树问题教学设计范文08-20

植树问题教学设计优秀05-16