《平均数》教案
作为一位优秀的人民教师,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?下面是小编帮大家整理的《平均数》教案,仅供参考,大家一起来看看吧。
《平均数》教案1
教学目标:
1。算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。
2。体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。
教学重点:会求一组数据的算术平均数和加权平均数。
教学难点:体会平均数在不同情境中的应用。
教学方法:引导-讨论-交流。
教学手段:多媒体
教学过程:
创设情景,引入新课(出示篮球比赛的一些画面)
在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?
上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?
活动1:前后桌四人交流。
找同学回答后,给出算术平均数的定义。
一般地,对于n个数x1,x2,…,xn我们把
叫做这个n数的算术平均数,简称平均数,记为 。读作“x拔”。
活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?
想一想:
小明是这样计算东方大鲨鱼队的平均年龄的:
年龄/岁 16 18 21 23 24 26 29 34
相应队员数 1 2 4 1 3 1 2 1
平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23。3(岁)
你能说说小明这样做的道理吗?找同学回答。
巩固练习一:
1。 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下:(单位:元)
10,12,13。5,21,40。8,19。5,20。8,25,16,30。
这10名同学平均捐款 元。(课本P216随堂练习 1)
2。一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0。1)
3。小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?
A 93分 B 95分 C 92。5分 D 94分
例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:
测试项目 测试成绩
A B C
创新 72; 85; 67
综合知识 50; 74; 70
语言 88; 45; 67
(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?
(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?
解:(1)A的平均成绩为 (分)。
B的平均成绩为 (分)。
C的平均成绩为 (分)。
因此候选人A将被录用。
(2)根据题意,3人的测试成绩如下:
A的测试成绩为 (分)
B的测试成绩为 (分)
C的测试成绩为 (分)
因此候选人B将被录用。
思考:(1)(2)的结果不一样说明了什么?
实际问题中,一组数据里的各个数据的“重要程度”未必相同。因此,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称
为A的三项测试成绩的加权平均数。
巩固练习二:
1。 某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?
变形训练:(小组交流)
1。甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;
2。某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16。5,18,18。5。如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 。
小结:先由学生总结,教师再补充。通过本节的学习,我们掌握了:1。算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。2。体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题。
布置书面作业:课本P216习题8。1 1、2
课外作业:(两题任选一题)
1。 到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数。
2。 请设计一个利用“加权平均数”方法来求平均数的`应用题,再将其“权”作适当改变,观察平均值的变化。观察“权”的变化对结果的影响。
板书设计
1。平均数
算术平均数:
对于n个数x1,x2,…xn我们把
叫做这个n数的算术平均数,简称平均数,记为 。
读作“x拔”
例1解:(1)A的平均成绩为
B的平均成绩为 。
C的平均成绩为 。
因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:
A的测试成绩为 (分)
B的测试成绩为 (分)
C的测试成绩为 (分)
因此候选人B将被录用。
加权平均数:称
为A的三项测试成绩的加权平均数。
《平均数》教案2
学习内容:
教材43页例2,练习十一第4、5题
学习目标:
1、能熟练地求平均数
2、会根据平均数简单地分析问题
3、知道平均数能较好地反映一组数据的总体情况
学习重点:
根据平均数简单地分析问题
学习难点:
比较平均数,得出新的信息
学习准备:
统计图、记录卡、小黑板
学习流程:
一、导入
什么是平均数,怎样求平均数?
二、学习交流
1、课件出示例2图片
(1)从图片上你知道了哪些信息?
(2)哪个队要高一些?
(3)怎样才能知道哪个队高一些?
点拨:观察事物不能光靠眼睛看,还要科学地算一算
2、出示欢乐队和开心队身高记录表
说一说你知道了哪些信息?
小组内算一算两个队的.平均身高,交流展示自己的算法
(148+142+139+141+140)5
=_____5
=_____(厘米)
(144+146+142+145+143)5
=_____5
=_____(厘米)
3、比一比
通过计算的结果看出( )了要高一些
点拨:平均数能较好地反映一组数据的总体情况。
4、出示练习十一第4题
(1)从统计图上你知道了什么?
(2)哪种饼干第一季度月平均销售量多?多多少?
(3)计算平均数,比一比
5、猜测
(1)哪种饼干销量越来越大?
(2)分析原因。
6、从统计图中你还得到什么信息?
三、展现提升
1、展示自己的学习收获。
2、交流算法。
3、提问、补充。
四、达标测评
练习十一第5题
五、总结归纳
1、通过今天的学习,你有什么收获?
2、通过求平均数,我们还可以得到很多新的信息
《平均数》教案3
一、导入新授:
通过师生谈话引出两个小组投球比赛成绩的数据。
二、新授:
1.出示投球记录:
第一组 第二组
姓名 投中个数
刘杰 9
杨立 8
孙梅 5
王丽 3
丁鹏 5
姓名 投中个数
张华 8
王云 7
李英 6
赵明 7
2.比较哪组的成绩好。
(1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。
(2)如果学生不能说出平均每人投中的`个数,教师可以作为参与者提出并让学生讨论。
3.学生试做。
4.交流计算结果,并根据平均数比较两组的成绩,说明哪组的成绩好。
第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5
= 28÷4 =30÷5
=7(个) =6(个)
7>6
答:第一组成绩好。
三、求平均数:
1.下表是亮亮家一周丢弃塑料袋的情况。
星期 一 二 三 四 五 六 日
个数 1 3 2 3 2 6 4
2.算一算:平均每天丢弃几个塑料袋?
(1)让学生观察统计表,说一说得到了哪些信息?
(2)自己试做。
(3)交流计算的方法和结果。
3.议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?
四、做一做:
先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。
《平均数》教案4
素质教育目标:
1。知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。
2。能力目标:理解平均数在统计上的意义。
3。情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点难点
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
教具准备:多媒体课件
教学过程
一、创设情境,提出问题
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)
很好。谁能给这种方法取个名字?(“移多补少法”。板书)
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的.哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
第一小组上月获小红星个数统计表
单位:个
叶茹李新吴玉刘超
14111013
第二小组上月获小红星个数统计表
单位:个
叶雨付涛张新江南夏丽
15128119
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
《平均数》教案5
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的.数学学习体验。
重难点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数 代表总体水平
总数 ÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
《平均数》教案6
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的'难点。
4、教学目标
在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
《平均数》教案7
教学目标
1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.
2.培养学生分析、综合的能力和操作能力.
3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.
教学重点
明确求平均数与平均分的区别,掌握求平均数的方法.
教学难点
理解平均数的概念,明确求平均数与平均分的区别.
教学步骤
一、铺垫孕伏.
1.小华4天读完60页书,平均每天读几页?
2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?
3.小明和小刚的体重和是160斤,平均体重多少斤?
师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.
二、探究新知.
1.引入新课.
以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.
今天我们共同研究一下求平均数问题.(板书课题:求平均数)
2.教学例2.
(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?
(2)组织讨论:你怎样理解水面的平均高度?
(3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.
(4)学生操作.
请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.
(5)学生汇报操作结果,一般出现两种方法.
第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用
164=4厘米,得出每杯水水面的平均高度是4厘米.
第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.
(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?
(7)引导学生列式计算.
(6+3+5+2)4
=164
=4(厘米)
答:这4个杯子水面的平均高度是4厘米.
小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.
(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?
明确:复习题中,4厘米是平均分的结果,即每个杯子水面的.实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.
(9)反馈练习.
小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.
3.教学例3.
(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)
(2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?
(3)根据讨论结果,明确先求出每组的平均身高,再进行比较.
(4)列式计算.
第一小组的平均身高是多少?
(136+142+140+135+137+144)6
=8346
=139(厘米)
第二小组的平均身高是多少?
(132+141+133+138+145+135+142)7
=9667
=138(厘米)
第一小组的平均身高比第二小组的高多少?
139-138=1(厘米)
答:第一小组平均身高高一些,高1厘米.
(5)反馈练习.
一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?
三、课堂小结.
通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.
四、布置作业.
回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.
《平均数》教案8
教学目标:
1、知道计算一组资料的平均数时,能根据数据的情况选择不同的算法。
2、知道在计算平均数时,可能会出现小数。
3、通过小组合作,探究比较得出总数,个数变化时平均数计算的方法。
教学重点:
1、能根据数据的情况灵活选择不同的算法。
2、知道在计算平均数时,可能会出现小数。
教学难点:
总数、个数有变化时计算平均数的`方法。
教学用具:
教学课件
教学过程:
一、 情景导入
1、 师:小丁丁期末考试中,语文得了96分,数学得了98分,两门功课的平均分是多少分?
2、 学生单独思考解答。
3、 学生汇报交流: (96+98)2 =1942 =97(个)
答:两门功课的平均分是97分。
4、 师:你是用什么方法来解答的?(学生回答) 板书:总数个数=平均数。
5、 师:那么如果现在我们知道了英语得分是97分,三门功课的平均分是多少分?你会怎样计算呢?
6、 学生可能会有二种解答方式。
7、 师:今天就让我们继续来学习有关平均数计算的问题。 板书:平均数的计算
二、 探究新知
(一)新授1
1、 师:我们来看一下,四位小朋友制作了很多的动物模型。(课件演示)
2、 师:这一小队平均每人制作了几个动物模型??
3、请小组讨论交流,你会这样思考?(时间留足让学生充分思考)
4、 师:谁来愿意说一说你的想法?请学生把不同的答案板演。
5、 师:让我们来看一下,小胖这位好朋友的答案是否和你相同呢?(课件演示)
6、 师:你认为谁的方法更加适合呢?
7、 学生交流讨论。
8、 小结: 可以根据数据的情况选择不同的算法来计算平均数;当资料中相同的数据较多时采用小胖那样的算法比较简单。
9、师:对于7.5个小动物这个数据你有什么疑问吗?
10、小结: 因为平均数是一组数据的平均水平,所以在计算平均数时,人数,个数可能会出现小数。
11、试一试:用你喜欢的算式:(请说一说理由) 上海八月的一周气温情况如下表: 小丁丁平均每次得分是多少分?
A.(32+30+32+30+34+32+34)7
B.(323+302+342)7
(二)新授
1、快速列出算式: 五(1)班学生为学校做纸花 ,男同学22人共做176朵,平均每人做多少朵? 17622 = 6朵 五(1)班学生为学校做纸花 ,男同学22人共做176朵,女同学24人共做284朵,平均每人做多少朵?
(176+284)(22+24)=10朵 五(1)班学生为学校做纸花 ,男同学22人平均每人做6朵,女同学24人共做284朵,平均每人做多少朵? (226+284)(22+24)=10朵
2、学生讨论交流。
3、教师引导学生注意这里没有直接出现总数,而且得到总数先要利用平均数乘以个数得到其中一个总数,然后加上后面的总数。
4、学生小组合作,解答问题。
5、小结:做题需看清问题求的是什么平均数,找到对应的总数和个数,然后用总数个数,求出平均数。
6、试一试:国庆节黄金周参观科技馆人数的情况。
( 46781 4 + 83615)(4 + 3 ) =(187124 + 83615)7 =2707397 =38677(人)
答:在国庆黄金周期间平均每天有38677人参观科技馆。
(三)小结
根据数据的情况,灵活选择不同的计算方法。要看清题目中给出条件中隐含的意义,不能光从数字上来理解。
《平均数》教案9
教学目标:
1、在具体问题情境中,感受求平均数是解决一些问题的需要,使学生进一步明确平均数的特点,丰富对平均数统计意义的理解和认识。
2、能运用平均数解释简单生活现象,掌握平均数计算方法,学会计算简单的平均数。
3、培养学生在解决实际问题过程中,进一步积累分析和处理数据的方法,发展学生的统计意识和观察。
教学重点:
在解决问题的过程中,理解平均数的意义,探索求平均数的.方法,并体会到学习平均数的现实价值。
教学难点:
体会平均数在统计的意义上的理解。
一、创设情境,使学生产生需求
1、凭直觉体验平均数的代表性
师:咱们在美术课上学会了剪各种各样的窗花,上周有个班举行了剪五角星的比赛,这次比赛很激烈,你们想知道这次比赛的结果吗
生:(齐)想!
师:那么这节课老师就想把这次比赛的结果给大家说道说道,让大家帮老师参考参考。到底哪个小组该得冠军?
生:(齐)好的
师:剪纸班分成了四个小组,比赛就在这四个小组进行。首先是1小组,1小组有三个人,我呢就随便从这三个人中抽出了一个人。瞧,他一分钟剪了几个?生:5个。
师:我用这个人的成绩代表1小组1人1分钟剪纸的一般水平,合不合理?如果你是我,你会同意我这样做吗?
生:我不同意。万一其他人剪得比他多,那不是不输了。
师:呵呵,当时老师就让其余2个同学也参加了比赛,有趣的事情是他们的比赛成绩很有意思
(师出示后两次剪纸成绩:5个,5个)
师:还真巧,现在你觉得用几表示1组1分钟剪纸的一般水平比较合理了呢?
生:用5。
师:为什么这回用5就行了?
生:因为每个人都是在1分钟剪了5个,用5来表示他1分钟投中的个数最合适了。
2、通过两组求平均数方法,强化对平均数的概念的理解。
(第2组)师:说得有理!也就是说他们三个人剪纸剪得一样多,用5表示他们这1分钟的剪纸水平很合理。看着大家的剪纸水平产不多,在第二组我就随便点了一个参加比赛。我们也一起来看看
《平均数》教案10
一、教学内容:
人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》
二、教学准备:
直尺、三角板,学生按矮到高的顺序坐好。
三、教学目标与策略选择:
以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:
1、通过观察、比较,理解平均数不是一个具体的数(实际的数);
2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;
3、学生能掌握求平均数的方法:(1)移多补少;(2)先求总数再平均分等;
4、体现总体与样本的关系。
鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:
1、以“情”、“趣”开路。
2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。
四、教学流程设计及意图:
教学流程
设计意图
一、活动导入,引出平均数的意义。
1、创设情境:比身高。
(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?
(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......
(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
师:如果不请男同学上来了,你觉得还有其它比较的办法吗?
2、同桌学生讨论。生:求出几个同学的平均数。
3、现场测量台上同学的身高。
4、学生尝试练一练,指名板书。
5、比较结果。是男同学高,还是女同学高。
6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。
二、延伸拓展,形成统计观念。
1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?
2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?
生:先把所有的身高加在一起,再除以有40人。
师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?
生:......
3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?
(1)学生参考选取第一排或第五排。
(2)选取第一组的学生比较有代表性。
4、估计。
师:你们先估计一下,第一组5个同学的平均身高是多少?
生:......(不会比最大的大,比最小的小)
5、学生计算。
6、进一步感悟平均数。
师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。
7、小结方法。
师:我们来观察一下,刚才我们是怎样求平均数?
生:先求总数(板书),除以人数,等于平均身高。
三、应用提高,深化统计观念。
1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......
2、你觉得有危险吗?
小朋友说:我身高140厘米,在这里游泳不会有危险。
2、猜猜看:
3根小棒,平均3根小棒,平均
每根长10厘米每根长15厘米
(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?
(2)举例。师:能举个例子吗?同桌商量一下。
(3)汇报。
3、变式练习。
(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?
①(39+87)divide;2=63(万张)
②(39+87)divide;3=42(万张)
(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?
①(39+22+23)divide;2=42(万张)
②(39+22+23)divide;3=28(万张)
质疑:为什么两个数要除以3?三个数相加要除以2呢?
小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)
4、读信息,了解最新动态,解决实际问题。
(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?
(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?
(3)计算--课件验证。
(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?
四、全课总结。
以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。
通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。
在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的'思维不断深入、发展。
五、教学片断实录:
片断一:
开场白:今天我们进行一场比赛--比身高。板书:男、女
师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
师:你们说谁比较高?
生:男同学。
师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?
生:还是男同学。(男同学似乎很得意)
师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
此时学生大笑。
师:你们笑什么呢?
生:这个男同学这么矮?
师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?
生:是男同学。生:是女同学。生:一样高。
师:怎么比呢?
生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)
生:可以把男同学或女同学的身高加起来,再比较。
另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。
......
师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
生:女同学或不公平。
生:还得再叫一位男生上来。
师:如果不请男同学上来了,你觉得还有其它比较办法了吗?
同桌讨论。
生:求出男、女生的平均身高。......
六、教学反思:
1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。
2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。
《平均数》教案11
教学目标:
1. 经历用平均数描述一组数据特征的过程,在具体的问题情境中体会平均数的意义,掌握求简单平均数的方法。
2. 自主探究移多补少及先合后分的求平均数的方法,会估计平均数的范围,能灵活选择合适的方法解决求平均数的实际问题。
3. 体会平均数在生活中的应用价值,在运用平均数知识解决问题的过程中,增强应用意识,发展统计观念。
教学重点:
体会平均数的意义,掌握求平均数的方法.
教学难点:
根据平均数的意义,对一些简单事件做出合理的分析和判断.
教学过程:
一.问题导学,自主学习:
1.创设问题情境:
师: 在光明小学举行的趣味运动会上,二年级第一小组的男女生进行了一场激烈的套圈比赛.让我们一起去看看比赛情况.(课件演示,引导学生观察)
a.问题:观察男女生套圈成绩统计图,从图中你知道些什么?
b.设疑:你认为男生套得准一些还是女生套得准一些?
c.说明:要想判断谁套得准一些,为了体现公平性,就要用到平均数.
2.揭示课题:认识平均数明确学习目标:
a.了解平均数的意义.
b.掌握求平均数的方法.
3.预习交流:
[小组内简单交流对平均数含义的理解和求平均数的方法,提出质疑.]
过渡:
回归课前的疑问,让我们一起去探究有关平均数的问题.
4.自主预学:
a.男生队套圈总数:6+9+7+6=()个
b.女生队套圈总数:10+4+7+5+4=()个
思考:
a.比较男女生套圈总数,这样比,你认为公平吗?为什么?
b.怎样比才够公平?
学情分析:
[能否从男女生参赛人数上的不同去衡量.]
二.小组合作探究:
问题:
1.怎样求男生,女生平均每人套中的个数呢?
2.你认为先求什么?再求什么?
学法指导:
a.明确总数份数和每份数三者之间的关系.
b.根据求每份数的方法,引导学生探索求平均数的方法.
三.展示交流,点拨提升:
1.探究展示:
学情预设:
男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
说明:7和6就是男女生套圈个数的平均数,它反映了一组数据的一般水平,并不表示每个人套中的实际个数.
2. 质疑:
分别用套圈的总个数去除以他们的什么?(总人数).
3. 精要点拨:
明确:求平均数,要找准和总数对应的份数.
方法:总数÷份数=平均数
过渡:
师:除了用先合后分的方法求平均数,还有其他求平均数的方法吗?
课件演示:移多补少的方法.
说明:
先合后分和移多补少都是求平均数的方法,在计算时,我们可以选用先合后分的方法求平均数,而移多补少的方法适合于操作时使用.
4. 平均数的范围:
观察与思考:
平均数7和6,相比它们所在的一组数据的.大小,有什么特点?
重难点突破:
明确::在一组数据中,平均数比最大的数小,比最小的数大.
四.训练检测,总结反思:
小华家1月~5月用水情况统计表
1月2月 3月 4月 5月
13吨 10 吨 11吨 9吨 12吨
(1).小华家平均每月的用水量在( )吨和( )吨之间.
(2).算一算:平均每月的用水量是多少吨?
[学生独立完成,小组内交流]
想一想:
1. 怎样确定平均数的取值范围?
2. 求平均数的方法是什么?你先求的什么?
归纳与总结:
a.最大的数>平均数>最小的数
b.平均数等于总数除以对应的份数
五.综合实践与应用:
1.想一想,下面的说法是否正确,简单说明理由。
①、小明期中考试语文、数学、英语三门功课的均分是95分,那么他的三门功课一定都是95分.()
②、小马过河:河的平均水深为130厘米,小马身高140厘米,小马过河不会有危险。( ) [学生独立思考后,小组里交流判断依据]
重点明确:
根据平均数的意义,并不表示:1.每门的成绩都是95分,有的高于95分,有的低于95分.
2.处处水深130厘米,有的低于130厘米,而有的地方比130厘米深的多.
2.知识达标:
同学们收集标本,小红收集了14个,小兰收集了12个,小丽收集了11个,小明收集了15个,平均每人收集多少个标本?
[进一步巩固求平均数的方法]
3.智能积累:
三年级的8名同学分两组向灾区捐款,一组捐了220元,二组捐了180元。
①、平均每名同学捐款多少元?
②、平均每组同学捐款多少元?
思考:两道题在解答时,有什么相同点和不同点?
重点明确:
相同点:都是先求捐款的总数.
不同点:各自对应的份数不同.
知识延伸:
小力前5次英语测验的平均分是91分,第6次得了97 分,他6次测验的平均分是多少分?
六.全课总结:
通过学习,你有什么收获?还有哪些疑惑?
当堂检测:
有3条彩带,长度分别是9厘米,17厘米,10厘米,平均每条彩带长多少厘米?
板书设计:
认识平均数
(一)1.移多补少
2.先合后分 男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
方法:总数÷份数=平均数
(二)平均数的特点
最大的数>平均数>最小的数
教学反思:
“平均数”是苏教版小学数学三年级下册《统计》里面的内容,它与我们的现实生活紧密联系,本课教学把重点放在掌握求平均数的方法上,而难点则是运用平均数的意义分析数据,从而体会到平均数的应用价值。
“平均数”的概念比较抽象,如何让学生初步理解它的概念并掌握正确的求平均数方法?我一开始就设计了贴近学生生活的熟悉的活动情境,通过引导学生观察统计图,获得数学信息,提出数学问题,自主预学和小组合作探究来解决数学问题,掌握问题解决的多种有效方法,引导学生在解决问题的过程中,让学生体会到平均数在生活中的应用价值,较好的完成了本节课的教学目标。这节课我为学生提供了充分的从事数学活动的时间和空间,让学生参与到知识的发生,发展,形成过程中去,引导学生利用数学知识解决实际问题,提高了学生的综合学习能力。
《平均数》教案12
教学目标
(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。
(二)通过题目设计,对学生进行思想品德教育。
(三)培养学生灵活计算的能力和解决实际问题的能力。
教学重点和难点
求平均数的意义及较复杂的求平均数的方法。
较复杂的求平均数的方法。
教学用具
教具:电脑软件、投影片。
学具:判断卡。
教学过程设计
(一)复习准备
1.口算。
①小明有12本书,小军有20本书,小明和小军平均每人有几本书?
②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?
由学生自己解答(列式计算)针对第③题提问:
①说出这道题的问题是什么?
②求平均数必须知道什么条件?
③说一说你是怎样计算的?
板书:投中总个数÷组数。
(二)学习新课
1.出示例 1:
五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
读题后,学生分组讨论思考题。(投影片)
①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?
在学生回答基础上,板书:投中总个数÷全班总人数。
教师:投中总个数和全班总人数题目中给了吗?怎么办?
②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?
尝试自己列式,然后讨论订正。
板书:
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
教师:综合算式怎样列?(学生试列式,再讨论订正。)
板书:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?
2.出示例2:(投影片)
下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)
教师:例2和例1比较,有什么异同?
明确:例1和例2的问题一样,但已知条件不同。
教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)
板书:
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
由学生完成。
(2)全班一共有多少人?
________________________
(3)全班平均每人投中多少个?
________________________
答:全班平均每人投中________个。
教师:你能列出综合算式吗?
板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。
讨论:对比例2和例1有什么不同?解答时应该注意什么问题?
教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。
(三)巩固反馈
1.做一做:
小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)
2.判断正误并说明理由。
①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?
[ ]
A.(28+36)÷(3+2);
B.(28 × 2+36 × 3)÷(3+2);
C.(28+36)÷2。
②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?
[ ]
A.(60+56)÷(5+3);
B.(60+56)÷2;
C.(60×5+56×3)÷(5+3)。
(四)课堂总结(学生总结)
教师:解答求平均数应用题应注意哪些问题?
①明确问题求的是什么平均数;
②总数量÷总份数=平均数。
(五)布置作业 课本P15:1,2,3,4,5。
课堂教学设计说明
本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的`意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。
本节新课教学分为三部分。
第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。
第一层:由准备题与例1对比,找出异同点;
第二层:由问题出发找出解决问题的方法;
第三层:列出分步和综合算式。
第二部分:教学例2,强调根据题意确定算法,可分3层。
第一层:出示例2,审题找出与例1的异同点;
第二层:分组讨论解题方法;
第三层:列出分步、综合算式。
第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。
板书设计(略)
《平均数》教案13
教学目标
1、使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学规律的兴趣,积累积极的数学学习体验。
教学重点:
掌握求平均数的方法,“移多补少”先合并再平分“的实际意义和应用。
教学难点:
理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。
教学准备:
多媒体课件
教学过程:
一、创设情境、生成问题
师:今天上课前我想考考大家。
(课件出示)一次数学测验中,班级平均分是90分,你猜猜这个班的马莉莉同学可能会得多少分?为什么?(小组学生讨论,全班交流)
师:班级平均分是马莉莉的实际分数吗?如果不是,你知道“班级平均分是90分”是什么意思吗?
师:生活中还有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?(板书:平均数)
二、探索交流,解决问题。
1、平均数的意义和求法。
(课件出示教材第90页例1情境图)
师:读情境图,你能找到哪些已知条件和所求问题?(学生独立完成,小组交流,全班汇报)
生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了
14、
12、11和15个塑料瓶。
生2:所解答的问题是平均每人收集了多少个。
师:你能解释“平均每人收集了多少个”的意思吗?(小组交流,全班汇报)
生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。
师:你能理解“同样多”是什么意思吗?在情景图中会表示出“同样多”吗?
师:你是怎样表示出“同样多”的?
生:通过“移多补少”的方法,达到每人收集的个数同样多。
师:每人收集的个数同样多还可以怎样说?
生:每人收集的个数同样多就是平均每人收集到的塑料瓶的个数。
师:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的.平均数。
师:还有其他方法吗?
生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。
师:请用算式表示出来。
生:
(14+12+11+15)÷4 =52÷4 =13(个)答:平均每人收集了13个。
师:谁能总结一下平均数的求法?
生:平均数=总数量÷总份数
师:这种求平均数的方法叫先合后分计算。
2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)
师:读图表,你能找出已知条件和所求问题吗?(学生独立完成,小组交流,全班汇报)
生1:已知第4小组男生队和女生队踢毽比赛成绩表。
生2:所求的问题是男、女两队,哪个队成绩好?
师:“哪个队成绩好?”是什么意思?用什么成绩来比较?(预设答案,既可以用平均数来比,页可以用总数来比)
生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。
师:你能说出总成绩、每队人数和每队的平均成绩之间的关系吗?
(学生独立完成,小组交流,全班汇报)
生:每队的总成绩除以每队的总人数等于每队的平均成绩
师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)
生:男生队平均每人踢毽个数
女生队平均每人踢毽个数
(19+15+16+20+15)÷5(18+20+19+19)÷4 =85÷5=76÷4 =17(个)=19(个)17<19
答:女生队的成绩好些。
三、巩固应用,内化提高。
练习二十二第1—3题
四、回顾整理反思提升
师:通过本课学习,你有哪些收获?
《平均数》教案14
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、复习
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的'同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5
教学反思:
《平均数》教案15
教学准备
多媒体课件,姓名笔划数统计表每人一张。
三、教学目标与策略选择
平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:
(一)教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学流程设计及意图
教学流程
设计意图
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示自己的姓名。
师:能完成这表格吗?(学生数一数,完成表格)
笔画数
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察老师姓名的笔画数,你能提出什么数学问题?
预设生(1)每个字笔画数的多少?
(2)比多少?
(3)发现数字间的规律。
(4)求总数?(师追问:你是怎样算出来的?)
师:知道了笔画数的总数,你现在又能解决什么问题?
预设生:可以求出平均每个字的笔画数。
师:平均每个字的笔画数,你是怎么得来的?
预设生(1)通过计算(7+5+9)÷3=7
(2)通过移多补少得到。
2、在对话交流中明晰概念
师:胡老师的姓名平均笔画数7画,这又表示什么?
预设生(1)表示胡必泛三个字笔画数的平均水平。
(2)表示老师姓名笔画数的一般水平。
师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
预设生(1)有关系的,是他们的中间数。
(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。
(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。
(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把7叫做胡老师姓名笔画数的--平均数。(板书课题)
师:请同学们算出自己姓名的.平均笔画数。(师巡视指导,选择、搜集有价值的信息。)
师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
预设生(1)比笔画数的总数。
(2)比平均笔画数。
(让学生先在小组内讨论,然后组织全班汇报交流。)
预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。
(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?
预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示(1)文成县实验小学四年级平均每班有学生56人。
(2)四(3)班上学期期末考试数学平均分是81分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。
(2)略
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。
学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5
师:你们知道这位同学是怎么想的吗?
预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。
学生计算,注重计算方法的选择。然后交流。
师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。
【《平均数》教案】相关文章:
平均数教案06-02
《平均数》 教案03-18
平均数教案08-29
平均数的教案11-24
《平均数》教案03-29
求平均数教案02-22
《求平均数》教案03-05
《求平均数》教案06-25
《20.1.1平均数》教案10-18