- 相关推荐
变化的量教学设计
作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?以下是小编为大家整理的变化的量教学设计,仅供参考,大家一起来看看吧。
变化的量教学设计1
教学内容:北师大版数学十二册18页。
教学目标:1、结合具体情境,用表格、图像、关系式呈现变量之间的关系,体会生活中存在大量互相关联的变量;2、在具体情境中,尝试用自己的语言描述两个量之间的关系。
教学重点:充分感受互相关联的变量。
教学难点:辨别哪些相关联的量可以用字母表示,怎么样表示?哪些不能。
教学过程:
一、体会什么是变量
师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。
二、创设情境,感受生活中互相关联的变量。
师:往往一些量的改变会引起另外一些量的改变,比如:身高的改变会引起体重的改变;购物时,单价或数量的改变,会引起总价的改变;象这样的例子很多,今天我们就来学习“变化的量”
1、小明体重变化情况
(1)说说表中出现了哪些量?它们是怎么样变化的?说说小明10周岁前的体重是如何随年龄增长而变化的。今后他的年龄和体重还可能怎么样变化?
小结:人的年龄和体重是互相关联的两个量,人的体重随着年龄的变化而变化。
2、骆驼的体温变化
(1)出示骆驼体温变化统计图,先观察认识统计图中反应出哪些信息。
(2)依次回答书中的三个问题。(先独立思考,再小组交流)
(3)小结:请说说骆驼的体温与时间之间的关系。
3、圆的'直径与周长的关系
(1)圆的直径与周长之间有怎么样的关系?
(2)这两个量的关系跟前两种情况比有什么不同?
(3)你能用式子表示这两个量的关系吗?前两个例子可以用含有字母的式子表示吗?
(4)小结:用语言表达圆的直径与周长之间的关系。
二、巩固
师:在生活中还有很多象这样互相关联的两个变量,一个量总是随着另一个量的变化而变化。你们还能举出一些这样的例子吗?
(只要学生说的合理,教师就应肯定)
师将学生举的一些例子板书在黑板上进行比较:在这几组互相关联的量中,哪些量可以用含有字母的等式来表示?
三、练习
请说说哪两个变量是互相关联的?在互相关联的两个量中,哪些可以用含有字母的式子来表示?
变化的量教学设计2
教学目标:
1.结合具体目标,体会生活中存在着大量互相依存的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点:
结合具体目标,体会生活中存在着大量互相依存的变量。
教学难点:
在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学用具:
课件
教学过程:
活动一:观察并回答。
1、下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。
2、 上表中哪些量在发生变化?
3、 说一说小明10周岁前的体重是如何随年龄增长而变化的?
小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。
4、体重一直会随年龄的增长而变化吗?这说明了什么?
说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的。
6、教育学生要合理饮食,适当控制自己的体重。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1、图中所反映的两个变化的量是哪两个?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、 一天中,骆驼的体温最高是多少?最低是多少?
4、 一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5、 第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、 骆驼的体温有什么变化变化的规律吗?
活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。
1、 蟋蟀1分叫的次数除以7再加3,所得的'结果与当时的气温值差不多。
2、 如果用 t 表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。
3、 你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明
4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?
全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
课后反思:
变化的量教学设计3
一、指导思想与理论依据:
我们生活在一个变化的世界里,周围的一切都在发生着变化,如温度的变化、速度的变化、物价的变化、季节的变化、身高体重的变化等。从数学的角度探索现实世界中的变化及变化规律,研究变量和变量之间的关系,使学生从常量的世界进入了奥妙无穷的变量的世界,开始接触一种新的思维方式,将有 助于学生更好地认识现实世界、预测未来。
函数是刻画变量之间关系的数学模型。函数的核心是“把握并刻画变化中不变”其中变化的是“过程”,不变的是“规律(关系)”。函数的定义通常有两种:即变量说和对应说,变量说便于从宏观上动态地把握,对应说便于从微观上静态地认识;函数常用的表示方法有:语言描述法、解析式表示、表格表示和图像表示。函数思想在小学阶段强调的是“渗透”,教师应创设“变化”的过程;激发学生“探究”的本性,让学生于变中把握不变。
二、教学背景分析:
1、 学习内容分析:
“变化的量”是在学习正比例和反比例之前的一节准备课。函数是研究现实世界变量之间关系的一个重要模型,从数学的角度研究变量和变量之间的关系,将有助于人们更好的认识世界、预测未来,而本单元的正比例、反比例就是两个重要函数。对函数的学习是中学阶段的一个重要内容,然而国际数学发展的趋势表明:对于变量之间关系的探索、描述应从小学非正式的开始,丰富早期对函数的经历是十分重要的。同时,研究现实世界中的变化规律也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。为了让学生在学习正比例和反比例之前初步感受到生活中存在着大量的变量,有些变量之间是存在着一定的联系的(一个变量随着另一个变量的变化而变化),所以教材在“变化的量”这一课中,设计了三个具体情境,使学生在观察、讨论交流的过程中体会变量与变量之间相互依赖的关系,尝试对这些关系进行大致的描述,体会函数思想。
在正式学习正比例、反比例之前,结合学生熟悉的日常生活中的具体情境,使学生了解生活中存在
着很多变化的量,初步体会变量之间的关系,并尝试对这些关系进行大致的描述,为后面学习正比例、反比例提供丰富的知识背景,使学生学习正比例、反比例时不再觉得抽象难懂,也有利于学生函数思想的形成。这样的教学,使学生对函数内容的学习从实际背景和生活经验开始,经历“数学化”的过程,并逐步向广度和深度两个方向拓展,小学主要理解正比例、反比例的初步模型,到中学逐步上升到严谨、抽象的数学概念。
2、 学生情况分析:
其实以前学生学习的一些基本的数量关系(速度、时间、路程和单价、数量、总价等)、探索数和形的变化规律、字母表示数以及五年级和六年级上学期的看图找关系,已经为学生积累了研究变量之间关系的经验。本节课的目标之一要让学生体会生活中存在着大量互相依赖的变量,对这些变化的量有一个整体
的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。虽然学生有了一些变量的生活经验,但是从数学的角度学生对具体情境中相互依存的两个变量能感悟多少呢?为此,我对六(5)班37名学生做了前期调查问卷测试,结果分析如下:
问卷试题:在一次实验活动中,小青记录了一壶水加热过程中水温变化的情况,数据如下:
水加热过程中水温变化记录
(1)上表中哪些量在发生变化?
(2)说一说水烧开之前水温是如何随着时间的变化而变化的?
(3)你还能举出我们生活中变化的量的例子吗?试着写出几个
测试结果分析:
从分析数据可以看出,正如开始我们所说,我们生活在一个变化的世界里,学生能感受到周围的一
切都在发生着变化,如温度的变化、速度的变化、物价的变化、季节的变化、身高体重的变化等。但是有接近一半的学生还不能从数学的角度探索现实世界中的变化及变化规律,不能感悟到很多变量和变量之间的相互依赖的关系。学生还没有从常量的世界进入奥妙无穷的变量的世界,开始接触一种新的思维方式。因此更加突出了本节课的教学目标。
3、 教学手段说明:
分类思想是根据数学本质属性的.相同点和不同点,将数学研究对象分为不同种类的一种数学思想。
分类以比较为基础,比较是分类的前提,分类是比较的结果。数学中的分类思想,是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类,进行研究从而解决问题的一种数学思想。它既是一种重要的数学思想,更是一种重要的数学逻辑方法。本节课将在“分类辨析”中比较,使学生对变量之间相互依赖关系的理解“水到渠成”。
三、教学目标:
1.知识与技能目标:体会生活中存在着大量互相依赖的变量,对这些变化的量有一个整体的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。
2.过程与方法目标:在具体情境中,借助数据和图像的深入分析,整体感知两种相关联的量的变化情况,初步探究它们的区别和联系。
3. 情感态度价值观目标:体验数学和生活的密切联系,主动尝试用数学的方法和语言进行交流和分析,体会函数思想。
四、教学过程:
1、导语:儿子过7岁生日时,我们为他点上了生日蜡烛,过了一会儿,我儿子突然喊起来:“妈妈,我发现蜡烛越来越短了!”我随口说道:“当然了,蜡烛燃烧的越多,剩余的自然就越短。”
这个情境中有没有哪两个量变化关系特别密切呢?
2、你能举出一个像这样一种量变化,另一种量也跟着变化的例子吗?(让学生说说生活中变化的量) 同学们都很善于观察,发现在生活中有很多变化的量,今天这节课我们就来研究这些变化的量。(板书:变化的量)
(一)、初步感知,用不同的形式表示的变化的量
老师也收集了一些我们身边变化的量的例子,请你看一看每一个情境中有哪两种变化的量?它们又是如何变化的呢?先独立观察、思考,再小组内交流。
学生小组内讨论,教师巡视。
全班交流:请针对你感兴趣的一个情景说一说。
二、整体感知,根据变化的趋势分类
我们发现刚才的每个情境中都存在两种量,一种量变化,另一种量会随着发生变化。这些情境中有的量的变化关系具有共同的特点,请你尝试按照这样的标准进行分类。先思考,再小组交流。将同类的序号填在表格内,并简单写写每一类的特征。
小组汇报,[板书分类序号、特点]
小结:小明的体重和年龄的变化实际是有规律的,只不过规律不明显,受是知识和方法的限制,我们现在还研究不了,将来到了高中,我们可以继续研究。骆驼的变化呈现周期性规律,1个周期就是24小时。
三、深入研究递减的变量间的联系和区别。
今天我们就按照这种分类方法继续深入研究变化的量,你们一定会有更多的发现。
刚才,我们将1和2分成了同一类,虽然都是一个量增加,另一个量就减少,但它们还是有区别的。 让我们来一起深入研究一下这两组(一增一减)变化的量,老师给大家提供了一些学习材料(作业纸)小组合作,用你们喜欢的方法进行研究。再整体观察分析,看看有什么新的发现。
3.汇报交流。
学生预设:从表格和图象两方面阐述,
小结:从表格中的数据能看出,同样是一增一减,燃烧长度和剩余长度是和不变(课件)。分的杯数和每杯的量是乘积不变(课件)。
从图象中也能看出这两种关系(课件)。并且同学们还发现蜡烛燃烧是有尽头的,图象是一条线段。而水是分不完的,图象无限趋近横轴,但不与横轴相交。
看来在变化的量中,还有不变的量,这个不变的量,决定了两个变化的量的关系,决定了他们的变化趋势。
5.总结方法:
我们刚才观察两种变化的量时,你们都采用了什么方式进行的研究呢?他们有什么优势呢?(图象
直观,便于观察整体的变化趋势,表格准确,可以借助数据进一步计算深入分析)
四、机动:对“同增”类的分析
刚才在分类时候,大家都同意将34分成一类,认为两个量的变化是同时增加的,你打算采用哪种方
法进行研究呢?老师也给大家准备了研究材料,小组合作,你们有什么发现吗?
(五)、小结全课:(5分)
1、这节课就要结束了,能谈谈这节课你的感受或问题吗?
2、其实我们今天研究的这些变化的量,都是我们以前已经知道并应用过的,例如正方形的周长和长方形的面积都是是我们三年级学过的内容,包括其他的情境中的变量都是我们非常熟悉的,今天我们从量的变化的角度出发,将数据和图形结合在一起观察分析,通过一次次的分类,发现在我们熟悉的这些规律中蕴含着更多的奥秘。同学们,其实变化的量中还有更多规律等着你们去发现,去探索。
五、学习效果评价分析:
课后学生是否能从具体情境中发现相互依存的两个变量,并能用不同方式(语言、表格、图像或关系式)来描述两个变量之间的关系。
六、教学设计特色说明与反思:
本课内容是在正式学习正比例反比例之前,专门设计的三个具体情境,通过学生感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致的描述。
教学时,我首先引导学生学会观察,提高他们的观察能力。在教学情景一、情景二、情景三时,我都鼓励学生去观察,去探索。通过学生观察,找出两种相关联的两种量之间的联系。通过观察,让学生自己去发现相关量的两种量之间的关系,从而充分体现学生学习的自主性。
然后引导学生学会归纳,提高学生的语言组织能力和表达能力。在表述相关联的两种量的关系时,让学生根据问题来寻找、组织、归纳得出两个相关联的量之间的变化规律。
最后引导学生学会互相合作,共同获取知识。在寻找生活的两个相关联的量教学时,我让学生进行六人小组合作共同来解决问题。小组中各个学生的知识水平、表达能力都有所不同,通过学生间的互动,从你帮我,我帮你中加深对知识的印象。同时从整个过程中,学生会受同伴身上闪光点的影响,从而会更加激励
自己。有的学生也会在整个过程中找回属于他们的自信。最重要的是:让他们学会帮助别人,学会合作。总之,我在整个教学过程中还给学生属于他们的课堂,让他们在属于自己的空间里自主的获取知识,找回学习数学的自信。把数学课堂建立在生活化情境中,使学生在生活化的数学学习中健康成长。
【变化的量教学设计】相关文章:
变化的量教学设计04-30
变化的量教学反思10-25
变化的量教学反思03-24
数学下册《变化的量》教学反思07-11
《变化的量》教学反思(精选12篇)10-28
《变化的量》说课稿08-18
《量与计量》的教学设计08-06
《变化的量》教学反思(通用10篇)03-21
速度变化量是矢量吗08-05
动量的变化量等于什么10-25