面积教学设计

时间:2024-06-28 05:24:22 教学设计 我要投稿

面积教学设计

  作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么教学设计应该怎么写才合适呢?下面是小编为大家收集的面积教学设计,欢迎阅读,希望大家能够喜欢。

面积教学设计

面积教学设计1

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  理解三角形面积公式的推导过程.

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

  教学过程

  一、激发

  1.出示平行四边形

  1.5厘米

  2厘米

  提问:

  (1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究三角形的面积(板书)

  二、指导探索

  (一)推导三角形面积计算公式.

  1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

  4.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的'面积与拼成的平行四边形的面积有什么关系?

  5.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  6.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  7、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

  板书:三角形面积=底高2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  (二)教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  四、反馈练习

  (一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.

  (二)计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  3.底是1.8米,高是.1.2米;

  (三) 判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

  ??2、等底等高的两个三角形,面积一定相等。 ( )?

  ? 3、两个三角形一定可以拼成一个平行四边形。 ( )?

  ? 4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

  五、作业:85页做一做和练习十六1题

面积教学设计2

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的.硬纸板多?

  有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

面积教学设计3

  学习目标:

  1.结合实例使学生初步认识面、面积的含义,能用正方形作单位表征简单图形的面积。

  2.经历面积与周长的区分,加深

  学习重点:结合实例使学生初步认识面积的含义。

  学习难点:面积与周长的区分

  学习准备:学具(方格纸、圆片、正方形、三角形、小印章等)、课件。

  学习过程:预设

  一、激情导课

  本节课我们学习与“面”有关的知识

  二、民主导学

  1.任务一:初步认识面

  (1)摸一模,认识面。请学生用手摸一摸数学书封面,再摸一摸课桌的桌面。

  通过更丰富的素材,积累比较面的的经验。教师请学生观察教室中黑板面和国旗的表面,

  (2)找找自己身上的面,比比脸面与桌面的不同。

  (3)认识曲面(苹果、乒乓球)

  2. 任务二:认识面积大家来进行涂色比赛。请一名同学上台来涂,其他同学在自己的座位完成涂色任务,最快涂完的获胜。

  2.探讨比赛规则是否公平,知道“面积”的概念。

  )结合实例认识面积。

  教师举例说明:黑板表面的大小就是黑板面的面积;国旗表面的大小,就是……(板书课题:认识面积。)

  2.学生举例说明物体表面的面积。

  (1)动作、语言相结合,说明身边物体的面积。

  请学生边摸边说,什么是数学书封面的面积,什么是课桌面的面积……

  (2)通过想象,举例说明其他物体表面的面积。

  请学生结合生活中经常见到的物体,边想象边说一说它们的面积。

  3.用丰富的实例,进一步完善对面积的认识。

  (1)摸摸字典的封面和侧面,说一说哪一个面的面积比较小。

  4.周长与面积的区别

  5. 将数学书按不同位置摆放,说一说封面面积的大小是否有变化。

  三、检测导结

  完成第62页做一做。

  交流时,让学生不但说明自己所填的结果,还要说明自己是怎样想的。

  反思:

  在本课教学中我通过组织学生摸一摸老师的手掌面,摸一摸自己的手掌面、数学书的封面,以及观察黑板的表面等等,用学生自己身边熟知的事物,借助于学生的生活经验,让学生充分感知”面”,引发新知的生成。

  在学生沉浸于生活体验时,通过涂色比赛的活动,使学生产生认知冲突,在探讨比赛规则是否公平的过程中,使学生认识到,这里所谓的大、小,实际上是说树叶的面有大有小,进而引出“面积”的概念,为认识面积作好准备。揭示本节课的主题——面积的含义。及时地把生活经验概括为数学知识,把生活语言提升为数学语言:黑板表面的大小就是黑板面的面积,数学书封面的大小就是数学书封面的面积等。先就具体事物,说明“面积”的意义,为“面积”概念的形成打下感性认识的基础。

  摸身边物体的表面,观察桌子、凳子、练习本、文具盒等物体的'表面,并且比较两个面的大小,能加深学生对“物体的表面有大有小,可以比较大小”的认识,巩固面积概通过完成做一做的练习,使学生体会一个图形中含有几个面积单位,它的面积就是几(个单位),感悟单位的价值。

  但反思整节课,还存在许多遗憾和不足的地方:

  1、在教学认识物体的某个面时,没有给学生以充分的时间去多说说各种各样的物体的面并说说什么是它们的面积。虽然学生已经知道了课本封面的面积、黑板表面的面积等,但没有延伸到课堂以外,延伸到实际生活中去。这在一定程度上,没有很好的拓展学生的思维广度、发展学生的空间观念。

  2、学生的小组合作活动组织的还是不够到位。虽然已经特意明确了活动要求,但由于平时的课堂中缺少训练,学生在操作过程中仍显乱糟糟。所以在今后的教学过程中我还要努力培养学生合作与交流的能力,在尊重学生个性发展的前提下,指导学生进行合作交流。让学生学会与人合作,并能与他人交流思维的过程和结果。

面积教学设计4

  教学目标

  1、通过操作观察,使学生知道长方体和正方体表面积的含义、

  2、初步学会长方体和正方体表面积的计算方法、

  3、培养学生的动手操作能力和空间观念、

  教学重点

  建立表面积概念,初步学会计算长方体和正方体的表面积、

  教学难点

  正确建立表面积的概念、

  教学步骤

  一、铺垫孕伏、

  1、长方体的特征是什么?

  2、正方体的特征是什么?

  指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

  二、探究新知、

  导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、

  教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)

  师:那么怎样求这6个面的面积呢?

  拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。

  师:老师发现同学们观察的真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?

  老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)

  同学们说的真好。你能把下面表格填上吗?看谁又快又对。

  师:长方体6个面的面积和又叫长方体的表面积。

  那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)

  正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示

  什么叫表面积呢?

  1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、

  2、学生两人一组相互说一说什么是长方体的表面积、

  (二)长方体表面积的计算方法、【演示课件“长方体的表面积”】

  1、学生归纳:

  上下两个面大小相等,面积用长方体的长乘宽;

  前后两个面大小相等,面积用长方体的.长乘高;

  左右两个面大小相等面积用长方体的高乘宽、

  2、教学例1、

  做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、

面积教学设计5

  一、教材分析:

  这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

  二、学情分析:

  根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。

  三、教学目标

  1、掌握组合图形面积计算的方法并正确计算。

  2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,初步解决生活中组合图形的实际问题。

  四、教学重点和难点

  1、掌握组合图形面积的计算方法。

  2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。

  3、学会运用“分割”与“添补“的方法计算组合图形的面积。

  五、教学过程

  (一)、谜语激趣,以旧引新

  (课前)将一些教学用具的纸片发给学生

  1、谈话导入,课件出示谜语。(①草地上来了一群羊。打一水果名称 ②又来了一群狼。 打一水果名称)

  (1)思考:谜语的谜底是什么?(①草莓 ②杨(羊)莓(没))设计意图:抓住教学内容的.特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

  (2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)

  (3)学生回答后教师出示答案,从而导出新课,并板书课题。

  设计意图:用猜谜语的形式让学生来明事理,从而导出新课。

  2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)

  (1)同桌交流、讨论。(小动)

  (2)代表回答。

  (3)复习平面图形面积公式。

  设计意图:巩固所学几种平面图形的面积公式及计算方法。

  (二)、自主探究新知

  1、小组合作,交流探讨。

  (1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。

  (2)2人小组讨论并计算出图形的面积。(小动)

  设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

  2、自主合作,探索方法。

  课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)

  (1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)

  (2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的面积。

  (3)根据学生的解法,教师进行分析、点评。

  设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。

  (三)、联系实际,巩固拓展

  1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。

  2、学生独立完成,代表发表自己的解题方法。

  3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

  设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。

  (四)、回顾全课,小结

  1、学生小结 2、教师总结 3、布置作业。

  设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。

  六、板书设计

  组合图形的面积

  组合图形分割、添补 基本图形

面积教学设计6

  教学目标:

  1、理解面积的意义。

  2、认识常用面积单位平方厘米、平方分米、平方米,初步形成这些单位实际大小的观念。

  3、学习选用观察、重叠、数面积单位。以及估测等方法比较面积的大小。

  教学重、难点:形成正确的“面积单位”概念。

  教学具准备:1平方厘米、1平方分米、1平方米的面积单位

  教学过程:

  一、建立面积概念

  1、物体表面的大小

  (1)(出示大作文本、生字本)谁能摸一摸他们的面在哪?

  本的封面、本的底面,他们都是本的面。大作文本和生字本的封面那个大?你怎么知道?

  (2)(出示两片叶子)谁能摸摸他们的面在哪?比一比,那片叶子的'面比较大?你怎么比的?

  (板书 观察、重叠)

  (3)请同学们摸摸自己课桌的面。课桌与刚才那些面比,谁的面的?谁的面小?

  (4)课桌面、作业本面、树叶面这些都是物体的表面。谁还能举例说说那是物体的表面?

  (5)物体表面有的有小,物体表面比较大就说他的面积比较大,物体表面比较小就说他的面积比较小。

  2、平面图形的大小

  (1)(出示长方形、正方形、圆形)这些都是平面封闭图形,他们的大小指的是他们的那部分?

  (指名学生摸)

  (2)平面封闭图形的大小就是平面封闭图形的面积。

  3、概括面积意义

  谁能说说什么是面积?阅读课本概念。(板书课题: 面积)

  二、认识面积单位

  1、设疑

  (1)出示两个长宽各异的长方形(面积相同),让学生体会用观察、重叠的方法难以比较他们的大小。

  (2)数格比较大小 (将两个长方形背面展示出来,他们的背面画有相同的方格数)

  谁的面积大?为什么?

  (3)同一格子标准 (指名三生,发给每人一个画好各自的长方形,让他们各自背着同学数出格子数,并告诉大家格子个数)

  谁手里的长方形面积大?为什么?(出示各自手中图形)

  你们发现了什么?

  比较两个图形面积的大小,要用统一的面积单位来测量。国际上规定好的方块叫做面积单位。

  (板书 面积单位)

  (4)认识面积单位

  带着问题自学课本

  ①常用的面积单位有哪些?

  ②说说每个面积单位的大小。

  (5)汇报学习收获,得出三个常用面积单位的规定,形成大小概念。

  ①各自比比,那个手指甲的面积接近1平方厘米?

  ②同桌互相比划1平方分米的大小。

  ③出示1平方米的纸,估计一下能站上多少个同学?

  ④找一找,在我们周围那些物体的表面大约是1平方厘米?1平方分米?1平方米?

  三、小结

  这节课我们学了哪些内容?你有什么收获?

  四、巩固

  1、完成课本第74页“做一做”

  2、完成课本练习十八第1、2题

  3、设计比赛(回家完成)

  你还能拼摆出更多、更新颖有趣的图形吗?

  要求:(1)图案面积都是5平方厘米。

  (2)给自己设计的图案起个名字。

面积教学设计7

  教学内容:

  九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题

  教学目标:

  1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:

  理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:

  根据实际情况来计算圆柱的表面积。

  教学过程:

  一、复习

  下面()图形旋转会形成圆柱。

  二、认识侧面积的意义和计算方法。

  1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

  问:你能想办法算出这张商标纸的面积吗?

  ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

  ⑵交流:你们是怎么算的?

  沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

  ⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

  观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

  使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  2、出示例1中的罐头。

  ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?

  ⑵出示数据:底面直径11厘米高:15厘米

  ⑶学生算出商标纸的面积。

  ⑷交流:你是怎么算的?先算什么?再算什么?

  3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

  追问:怎么算圆柱的侧面积?

  圆柱的侧面积=底面周长×高

  长方形的'面积=长×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  三、认识表面积的意义和计算方法。

  1、出示例3中的圆柱。

  ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

  ⑵让学生算一算后交流。师板书:

  长:3.14×2=6.28(厘米)宽:2厘米

  ⑶圆柱的两个底面的直径和半径分别是多少厘米?

  板书:直径2厘米半径1厘米

  2、引导画出圆柱的展开图。

  ⑴这个圆柱有几个面?分别是什么?

  ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

  ⑶在书上方格纸上画出这个圆柱的展开图。

  ⑷交流:你是怎么画的?

  3、认识圆柱的表面积。

  ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

  板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

  ⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。

  4、练习:完成“练一练”第2题。

  ⑴各自练习,并指名板演。

  ⑵对照板演,讨论:

  这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?

  想一想:如果知道的是圆的周长呢?

  四.总结反思

  1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?

  畅谈体会。

  五、巩固应用

  1.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  2.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?

  教学反思:

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

面积教学设计8

  教学目标:

  知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

  教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学过程:

  一、创设情境,提出问题。

  1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  2. 这个圆形的面积指的是哪部分呢?

  3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)

  二、探究思考,解决问题。

  1.请大家估计半径为5米的圆面积大约是多大?

  2.用数方格的方法求圆面积大小

  ①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

  2.那么圆形的面积可由什么图形面积得来呢?

  3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

  4.同学们操作,教师巡视.

  5..大家想象一下,如果把一个圆等分的`份数越多,拼成的图形越接近什么图形?

  6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

  ①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

  ②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

  7用字母怎么表示圆面积公式呢?

  四、应用圆面积公式

  1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

  2.第18页第1题

  学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

  3. 第18页第2题

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

  板书设计:

  圆的面积

  平行四边形面积=底×高,

  圆形面积公式=圆周长的1/2×半径

  圆形面积公式=圆周率圆×半径2

面积教学设计9

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的合作精神和创新意识。

  教学重点:

  推导出圆的.面积公式及其应用。

  教学难点:

  圆与转化后的图形的联系。

  教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图

  教学过程:

  一、以新引旧、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。

  5、转化后的图形与原来的图形面积相等吗?

  6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容

面积教学设计10

  教学目标:

  1.知识技能:

  (1)掌握长方体和正方体表面积的基本计算方法。

  (2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。

  (3)通过练习学会灵活地解决一些实际问题。

  2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。

  3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。

  教学重点和难点:

  教学重点:根据给出的长方体的长宽高,确定与所求面对应的棱。

  教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。

  教学过程:

  一、基本练习回顾旧知

  课件出示长方体和正方体

  要求长方体或正方体的表面积必须知道什么?

  根据给出的数据可以求出哪些面的面积?

  要求表面积怎样列式计算?

  学生在练习本中列式计算→小组内互相检查→个别汇报

  二、变式练习探索本质

  课件出示图片

  在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?

  学生看图判断,口头回答

  同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。

  下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。

  课件出示题目

  杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,

  1.制作这样一个木箱至少要用木板多少平方米?

  2.如果把木箱放在地上,占地多少平方米?

  当我们求长方体的表面积的时候,首先要判断要求哪几个面的.面积,缺少了哪个面;再确定所求的面对应的棱的数据,这样才不至于在计算中出现错误。

  3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

  抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。

  学生独立列式→同位互相检查→集体讲评

  下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。

  4.在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?

  学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变

  我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。

  三、检测练习巩固强化

  这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。

  课件出示题目

  一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?

  (1)3×2×2+2×0.5×2()

  (2)(2×0.5+3×0.5)×2+5×2()

  (3)3×2×2+3×0.5()

  (4)(3×2+3×0.5)×2()

  (5)(2+0.5)×2×3()

  学生独立思考作出判断→进行小组交流→汇报

  三、综合练习发展提高

  同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?

  课件出示题目

  学校要给美术室重新装修,美术室长8米,宽6米,高4米。

  1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?

  2.如果每平方米用4块地砖,至少需要准备多少块地砖?

  3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?

  4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?

  独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。

  在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。

  四、全课小结

  同学们,我们今天学习了什么?你有什么收获?

面积教学设计11

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的`图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

面积教学设计12

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:理解公式并正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推导过程。

  教学方法:动手操作、小组讨论、启发、演示等教学方法。

  教学准备:

  1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

  2、课外延伸思考题。

  3、平行四边形转化为长方形的课件。

  教学过程

  一、创设情境,导入新课:

  1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

  2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

  师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

  二、合作交流,探究新知

  1、数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  学生讨论,鼓励学生大胆发表意见。

  3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

  学生用课前准备的`平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件演示剪——平移——拼的过程。(多种方法)

  4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。可以出示讨论题。

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

  同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

  板书:

  平行四边形面积= 底 × 高。

  5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:S=a×h=ah=ah

  6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  三、分层运用新知,逐步理解内化

  1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

  3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

  4、 求下列平行四边形的面积 。

  (2)判断对错:

  师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

  (3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

  生读题。

  师:等底等高的平行四边形面积一定相等。

  3. 思考题:你有几种方法求下面图形的面积?

  四、总结全课,深化认识

  通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

  今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

面积教学设计13

  教学目标

  1.通过操作观察,使学生知道长方体和正方体表面积的含义.

  2.初步学会长方体和正方体表面积的计算方法.

  3.培养学生的动手操作能力和空间观念.

  教学重点

  建立表面积概念,初步学会计算长方体和正方体的表面积.

  教学难点

  正确建立表面积的概念.

  教学步骤

  一、铺垫孕伏.

  1.长方体的特征是什么?

  2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

  二、探究新知.

  导入 :同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.

  (一)建立长方体表面积的概念.

  1、教师提问:什么叫做面积?

  长方体有几个面?

  (用手按前、后,上、下,左、右的顺序摸一遍)

  2、教师明确:这六个面的总面积叫做它的表面积.

  3、学生两人一组相互说一说什么是.

  4、教师板书:长方体6个面的'总面积,叫做它的表面积.

  (二)长方体表面积的计算方法.【演示课件】

  1.学生归纳:

  上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

  前后两个面大小相等,它是由长方体的长和高作为长和宽的;

  左右两个面大小相等,它是由长方体的高和宽作为长和宽的.

  2.教学例1.

  做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  教师启发:做这样一个长方体纸盒要用多少平方厘米的硬纸板就是要计算这个.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.

  第一种解法:

  长方体表面积=6个面积的和

  64+64+45+45+65+65

  =24+24+20+20+30+30

  =148(平方厘米)

  答:至少要用148平方厘米硬纸板.

  第二种解法:

  长方体表面积=上下面面积+前后面面积+左右面面积

  652+642+452

  =60+48+40

  =148(平方厘米)

  答:至少要用148平方厘米硬纸板.

  副标题#e#

  第三解法:

  长方体表面积=(下面面积+前面面积+右面面积)2

  (65+64+54)2

  =742

  =148(平方厘米)

  答:至少要用148平方厘米硬纸板.

  3.思考:你认为哪种解法简便?

  (根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)

  4.教师小结:

  计算长方体表面积的关键是找出每个面的长和宽.

  5.练习:

  一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?

  三、全课小结.

  这节课我们学习了什么知识?我们学习了有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

  四、随堂练习.

  1.用两种方法计算自带.

  2.计算下图的表面积.

  ①计算.

  ②有几种计算方法?

  ③哪种方法比较简便?

  五、课后作业 .

  一个长方体的形状大小如下图:

  它上、下两个面的面积分别是多少平方分米?

  它前、后两个面的面积分别是多少平方分米?

  它左、右两个面的面积分别是多少平方分米?

  这个是多少平方分米?

  六、板书设计 .

  长方体6个面的总面积叫做它的表面积.

  例1.做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  64+64+45+45+65+65

  =24+24+20+20+30+30

  =148(平方厘米)

  =60+48+40

  =148(平方厘米)

  652+642+452

  =60+48+40

  =148(平方厘米)

  (65+64+54)2

  =742

  =148(平方厘米)

  答:至少需要148平方厘米硬纸板.

面积教学设计14

  一、教学目标

  1、知识与技能:进一步熟悉面积单位的大小,经历面积单位间进率的推导过程,并能够进行简单的换算。

  2、数学思考:培养学生观察比较分析问题的能力,逐步养成积极思考的学习习惯。

  3、解决问题:让学生了解数学知识的来源与用途,初步学会在解决数学问题的实践活动中应用数学。

  4、情感与态度:引导学生探索知识间的内在联系,激发学习兴趣和建立学好数学的自信心。

  二、教材分析

  1、课标解读

  根据《标准》精神,小学数学教学应该让学生经历知识产生和形成的过程,发挥他们在学习上的主体作用,促进学生的全面发展。与以往教材相比,这部分知识在结构上与义务教材大体相同,但突出的变化是加强了探索性,让学生经历知识的形成过程。本课在讨论常用面积单位之间的进率时,应注意给学生留下适当的探究空间,使他们能获取知识的同时,获得探究的体验。

  2、内容分析

  本内容是教科书的第82~83页例4及练习二十的相关习题。这节课的内容是在学生已经建立了面积的概念并掌握了正方形面积计算的基础上,探究常用面积单位之间的进率。

  应该说小学生从学习长度到学习面积,从学习长度单位的进率到学习面积单位的进率,是认识发展的一次突破。学好本课内容,不仅能巩固前几节课知识,还能提高解决简单实际问题的能力,并且为以后学习立体图形打下基础。由于相邻长度单位的进率是10,受负迁移影响,学生计算面积进率时容易出错。例4教材采用由旧引新的方式,提出学习课题,即相邻两个常用长度单位之间的进率是10,那么,相邻两个常用面积单位之间的进率是多少呢?教材采用1∶1的比例画出了1个1平方分米的正方形,并在正方形内用虚线画出了1平方厘米的小方格,然后引导学生根据正方形面积的计算方法,推算出边长1分米即边长10厘米的'正方形面积是多少平方厘米。至于1平方米与1平方分米之间的关系,则由学生自己依次类推。

  教学重点是掌握相邻面积单位间的进率,能够进行简单的换算。教学难点是面积单位的换算。教学关键是让学生切实参与1平方分米=100平方厘米的推导过程。

  三、教法、学法

  1、由于学生在以往生活、学习中较频繁接触周长等一些进率为10的单位,受相邻长度单位进率为10的影响,学生容易产生相邻单位进率都是10的错误迁移。再加上三年级学生思维分配力较弱,有时在计算中会顾此失彼,出现错误。因此,要加强对比,寻找规律,使学生体会到相邻面积单位与长度单位它们的进率是有联系但又不同的。

  由于学生还没学过用100乘、除,所以只要求学生口头推算。如要求8平方分米=( )平方厘米,可以这样想:因为1平方分米里面有100个平方厘米,8个平方分米就有8个100平方厘米,也就是800平方厘米。又如要求300平方厘米=( )平方分米,可以这样想:因为每100平方厘米是1平方分米,300里面有3个100,就是3平方分米。

  2、学法点拨

  (1)面积单位进率的推导与直观图象相结合。

  (2)注重知识的形成过程,结论让学生自己得出。如1平方分米的正方形图片中让学生用1平方厘米的小方块摆,或画、或算来得出1平方分米=1000平方厘米的结论。

  (3)要充分暴露学生思维过程。面积单位换算时,老师要注重学生想的过程,多问几个“你是怎么想的”。

  (4)引导学生举一反三,推导1平方米=100平方分米。

面积教学设计15

  教学目标:

  1、让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。

  2、让学生应用发现的规律解决一些简单实际问题。

  3、养学生的合作能力、空间想象能力和思维能力。

  教学重点与难点:通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。

  教学准备:

  1、 课前把全班同学合理分组,并明确分工,强调合作。

  2、 以小组为单位,每小组准备8个1立方厘米的正方体,2个完全相同的长方体,以及10盒同样的火柴盒。

  教学过程:

  一、拼拼算算

  1、 教师演示:把两个体积是1立方厘米拼成一个长方体。

  提问:体积有没有变化?

  学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。

  小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。

  追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?

  再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。

  2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。

  提问:表面积有没有发生?

  让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。

  组织交流:A两个同样大小的正方体拼成长方体,表面积发生变化了吗?

  B拼成长方体后表面积是增加了还是减少了?

  C那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。

  3、深入探究:

  课件演示操作要求:

  (1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)

  (学生自己猜想、操作、探究、验证)

  提醒学生把相关数据及时填在表中。并交流填写结果。

  (2)、当正方体增加到5个6个时,表面积会怎么变化呢?

  学生先猜想,再通过拼一拼来验证。

  (3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?

  给予充分时间让学生讨论。

  交流(可以有多种表述,只要符合题意即可)

  “从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。”

  4、小组动手操作,用老师给你们准备的2个相同长方体拼成三个不同的大长方体,你有什么发现?

  (1)、学生操作探究讨论。

  交流:“体积没有变,表面积变了。”“都比原来减少了2个面的面积,但不同的.拼法减少的面积就不同。(交流时课件演示三种不同的拼法)

  (2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)

  (3)、怎么验证你的发现呢?(引导学生通过计算验证自己的发现)

  小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。

  二、拼拼说说

  1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体

  问:哪个长方体的表面积?大多少?

  学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。

  (教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)

  2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。

  学生分组操作讨论交流。

  教师引导学生具体分析每一种包装方法,并适当说明理由。

  “怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)

  怎样拼最少呢?(5盒叠一起,并排两叠)

  三、全课小结

  通过这节实践活动课,你知道了什么?

【面积教学设计】相关文章:

《面积与面积单位》教学设计06-01

面积教学设计10-11

面积的教学设计04-18

面积的教学设计10-12

《面积》的教学设计08-21

面积和面积单位教学设计10-01

圆的面积教学设计09-03

面积的变化教学设计05-01

《什么是面积》教学设计06-02

圆的面积教学设计11-15