- 相关推荐
四年级数学《植树问题》教学设计(通用11篇)
作为一位无私奉献的人民教师,常常要写一份优秀的教学设计,教学设计是一个系统化规划教学系统的过程。教学设计要怎么写呢?下面是小编整理的四年级数学《植树问题》教学设计,希望对大家有所帮助。
四年级数学《植树问题》教学设计 1
【教学目标】
1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。
3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
【教学重难点】
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律。并能运用规律解决实际的问题。
【教学准备】
课件,纸条。
【教学过程】
一、谈话引入,明确课题
在我国的北方经常出现沙尘暴天气,它给我们的生活带来了很大的危害,今天老师也给大家带来了几张有关沙尘天气的图片新闻。(课件出示沙尘暴的图片)同学们知道吗?实际呀沙尘天气是大自然对人类的惩罚,正因为以前人们的乱砍乱伐,破坏了大自然的生态环境,才会出现今天的沙尘天气。最近呀我们这个城市也经常出现雾霾天气,雾霾比沙尘暴天气危害更大,那雾霾给我们的生活带来了什么不便呀?那你们知道治理沙尘和雾霾天气最好的办法是什么?(植树造林)。那么今天这节课我们就来研究植树中的数学问题。(板书课题)
二、探索交流,解决问题
(一)设计植树方案
为了改善我们的校园环境,让大家呼吸到更新鲜的空气,学校准备在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案。(你能设计出几种方案)
你们认为应该怎么种树?只让学生口答方案,追问有哪三种方案?(两端种树、一端种树、两端不种)。
(二)、两端都种
出示方案一:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)学生齐读题,理解题意:强调“一边”和“两端”,理解每隔5米栽一棵的意思。
(2)理解示意图展示。
那我们就一起来试着种一下吧!用一条线段来表示20米长的小路的一边,我们应该怎么种呢?开头为什么要种?(因为是两端植树)也就是说路的开头先要种一棵,那下棵怎么种呢?要和头一棵树隔5米,也说是隔5米种一棵,一直种到小路的末端。
(3)理解株距。
看示例图,大家发现没有每两棵树之间的距离相等吗?都是多少?(5米)这里的5米就表示株距,株距指的就是每两棵树间的距离。实际上株距表示的就是一个间隔的长度。
(4)发现规律
谁能说说棵数和间隔数之间是什么关系?
板书:两端都栽:棵数=间隔数+1
间隔数棵数-1
(5)教学画线段图
这个公式短时间记住没问题,但时间长了,三个月、半年、一年忘了怎么办?可以借助画线图,带着学生在黑板上画线段图。
(6)引导学生列式:
20÷5=4(个)(这里的4指什么?)
4+1=5(棵)(这个算式求的是什么?为什么要加1?)
答:一共需要5棵树苗
(三)、两端都不种
出示方案二:学校在一条长20米的.小路一边植树,每隔5米栽一棵(两端都不栽)。一共需要多少棵树苗?
(1)指生读题后,说说这道题和上一题的不同点。
(2)两端都不栽什么意思?指生比划一下,出示示例图让学生判断画的对吗?
(3)发现规律并板书。
(4)同桌之间互相列算式。
(5)指生交流并点评。
(四)、一端种树
出示方案三:学校在一条长20米的小路一边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?
(1)生齐读题后,说说这道题和上一题的不同点。
(2)只栽一端什么意思?
(3)指生交流,发现规律并板书。
小结:通过这三种植树情况,大家发现没有要想算出棵数,必须知道什么?(只要知道间隔数,就可以算出棵数。)引导学生说出:间隔数=总长÷株距。
你们真是学校的智多星,不仅帮学校解决了难题,还探究出了植树的规律,真是太棒了!你们幸福吗?拍拍手吧!
(五)强化规律
课件出示种树的三种情况,学生抢答,记忆种树的规律。
其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)数学上我们把这些现象统称为植树树问题,我们一起来看一下生活中的植树现象。(课件展示图片。)
三、回归生活,实际应用。
我们都知道数学离不开生活,要解决生活中的植树问题,我们首先要确定它是三种情况中的哪一种。老师收集了一些生活实例,同学们能不能运用我们刚探究的这些规律来解决这些问题呢?对自己有没有信心?那就让我们一起走进数学,走进生活吧!(课件逐一出示练习)
1、为迎接六一儿童节,学校准备在教学楼前60米的道路一旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。一共需要几盆花?属于( )
①两端摆 ②一端摆 ③两端不摆
答:一共需要( )盆花。
2、小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。这列纵队一共有几个学生?
属于( )
①两端都站
②一端站
③两端不站
答:这列纵队共有( )个学生。
3、一根木头长8米,每2米锯一段。一共要锯几次?属于()植树现象?
①两端种②一端种③两端不种
答:一共要锯()次。
4、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
(1)先判断属于哪种情况,独立解决。
(2)小组交流。
(3)汇报。
四、回顾整理,反思提升。
学习永远是件快乐而有趣的事情,这节课老师感到很快乐,我收获了幸福,你们收获了什么?
【板书设计】植树问题
两端都栽:两端都不栽:只栽一端:
棵数=间隔数﹢1棵数=间隔数-1棵数=间隔数
间隔数=棵数-1间隔数=棵数+1
四年级数学《植树问题》教学设计 2
教材分析:
“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。
教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
一、创设情境,导入新课
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)
通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
二、新课探究:
1、出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的`一侧每隔5米植一棵树,一共需要准备多少棵树苗?
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。
2、分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:
(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。
3、汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
三、课堂练习
1、做一做:
(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?
(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
四、全课小结:
这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)
五、板书设计
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
四年级数学《植树问题》教学设计 3
教学目标:
1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。
2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。
3、通过生活的事例,初步体会“植树问题”的思想方法。
教学难点:
运用“植树问题”的解题思想解决实际问题。
教学重点:
参与探索并发现“植树问题”的解题规律。
教学准备:
练习纸、课件
教学过程:
一、谈话引入,揭示课题
师:同学们,你明白我们这天要学习什么资料吗?
生:植树问题
师:你们是怎样明白的哦?
好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?
板书课题:植树问题
出示学习目标:
二、操作感悟,探究规律
1、请看大屏幕:
(1)想一想:
那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?
①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!
(2)猜一猜:
如果告诉你每隔5米种一棵,种几棵比较适宜?
生1:5生2:4生3:3
(3)画一画:
师:那么,有什么办法验证你的想法?(画图)
哦,你能不能用简单的示意图把你的想法简单地画出来呢?
(教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。
2、展示、汇报
①选一学生的示意图展示、汇报。
两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
②选另一学生的示意图展示、汇报。
只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
③选另一学生的示意图展示、汇报。
两端都不种:电脑展示,学生说出自己的想法,教师把学生画的.示意图画在黑板上
3、写算式
师:我们刚才用图来表示的思维过程能不能用个算式来表示?
①只种一端:你是怎样想的呢?谁能来说一说。
20÷5=4(段)=4(棵)
棵数和段数一一对应。
②两端都种:20÷5+1=5(棵)
20÷5表示什么?加“1”是什么意思?
③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)
每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)
20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)
4、小组讨论:
我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)
5、教师引导学生总结:
①只种一端:棵数=段数
②两端都种:棵数=段数+1③两端都不种:棵数=段数—1
那么段数(间隔数)怎样求呢?
所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。
6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)
师:老师也收集了一些图片,看看那里有植树问题吗?
(根据学生的回答教师出示课件,并说明为什么属植树问题)
三、活学活用,解决问题
师:我们刚才通过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?
(一)基本练习:我能行!
1.从头至尾栽了10棵树,那么有个间隔。
2.一根木头长8米,每2米锯一段。一共要锯次。
好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!
(二)综合练习:我挑战!
1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
①6×36=216(米)
②6×(36-1)=210(米)
③6×(36+1)=222(米)
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
①10÷5=2(米)2×8=16(分钟)
②5×8=40(分钟)
③(5-1)×8=32(分钟)
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
①12÷1=12(个)
②12÷1+1=13(个)
③12÷1-1=11(个)
(三)拓展练习:我智慧!
四、再次梳理,总结提高
这天我们学习了什么资料?你有什么收获?你有什么感受?
四年级数学《植树问题》教学设计 4
教学目标:
1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。
2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。
3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
教学重难点:
引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。
教学准备:
课件,纸条,小刀。
教学过程:
课前热身:
师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)
师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。
一、创设情境,生成问题。
1、猜谜激趣。
师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)
生:一刀两断。
教师板书:1刀2段,并画出线段图表示。
师:切两刀呢?(生猜测,师演示,指名画线段图)
学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?
师:你发现了什么规律?
学生说,教师板书:刀数=段数-1。
2、提出问题。
师:同学们真聪明,可以帮我一个忙吗?出示设计要求:
在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵。)
师:每隔5米是什么意思?
(每两棵树之间的`距离是5米,每两棵树之间的距离相等。)
二、探索交流,解决问题。
1、设计方案,动手种树。
师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)
2、反馈交流。
师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)
师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)
师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?
生:两棵树间的间隔都一样,他们的间隔个数都相同。
师:那它们的不同点又在哪里?
根据学生的回答板书:
(1)两端都栽。
(2)只栽一端。
(3)两端都不栽。
师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。
3、合作探究,总结规律。
师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?
小组合作探究,教师巡视指导。
4、交流规律。
小组汇报,其他小组补充。教师根据汇报情况板书:
两端都栽:棵数=段数﹢1
只栽一端:棵数=段数
两端都不栽:棵数=段数-1
5、验证规律。
师:我们再用线段图验证一下我们发现的规律。
(1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?
(2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?
(3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?
6、强化规律。
请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。
师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!
师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)
你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)
三、巩固练习,运用规律。
师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)
1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?
2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?
4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)先判断属于哪种情况,独立解决。
(2)小组交流。
(3)汇报。
师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!
四、回顾整理,反思提升。
师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?
指名说一说。
你认为谁的表现最值得你去学习?
板书设计:
植树问题
两端都栽:棵数=段数﹢1
只栽一端:棵数=段数
两端都不栽:棵数=段数-1
四年级数学《植树问题》教学设计 5
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题
教学难点:
理解“间距数+1=棵数,棵数-1=间距数”
教学准备:
课件
教学过程:
一、创设原型
1、教学“间隔”的含义
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
3、根据生活实景信息回答问题。
(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)
(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)
(3)河边的护栏有5根铁链,需要几根柱子?(6根)
4、引入课题
师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)
二、构建模型
1、用图象语言描述“植树棵数与间隔数”之间的关系。
师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)
2、构建植树问题的数学模型
(1)我们一起来看一下这几位同学画的图,你能说说你是怎样画的吗?
(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的。)
(3)通过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)
(4)在线段图上,我们用点表示栽的`树,几个点就是几棵树,通过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?
植树棵数间隔数67
(板书:棵数-1=间隔数间隔数+1=棵数)
师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!
三、利用模型解决问题
1、教学例1
师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一起来。
课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)谁能大声清楚朗读这个题目?
(2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)
(3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?
(3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?
(4)展示学生线段图,你能说说你是怎样画的吗?
(5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?
(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。
(7)汇报:说说你的想法。
①出示学生各种答案,板书在黑板上。
②对于这几种方法,你们有什么看法吗?(生:我认为……)
③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)
④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。
⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。
2、试一试
师:如果老师把题目改一改,看看谁还会?
课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?
(1)生轻轻读题,说说从这个题目中你了解了些什么信息?
(2)和刚才这题比较,你想说什么?
(3)学生独立列式并汇报。
3、巩固新知
师:恭喜大家,顺利通过检查!你们还想理解新一轮的挑战吗?
课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?
(1)生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?
(4)学生独立解答并汇报:
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)
四年级数学《植树问题》教学设计 6
学情分析:
四年级的学生以形象思维为主,而且抽象逻辑思维潜力也有了初步的发展,具备了必须的分析综合、抽象概括、归类梳理的数学活动经验。
教材分析:
“植树问题”原本属于经典的奥数教学资料,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
这个数学资料既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的状况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。
设计理念:
《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。
教学资料:
人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。
教学目标:
知识与技能:
1、理解间隔概念,明白间隔数与棵树之间的关系,初步建构植树问题的数学模型。
2、能根据数模解决简单的实际问题,培养学生观察、分析及推理潜力。
数学思考:
1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
解决问题:
能够应用本节所建构的植树问题的数模以及探寻到的`规律,针对实际情形灵活的来解决问题。
情感态度与价值观:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的潜力。
教学重点:
会应用植树问题的规律解决一些相关的实际问题。
教学难点:
建构数模,探寻规律。
教学准备:
课件、实物投影仪、每组一张表格
教学流程:
一、创设情景,导入新课。
1、猜谜语
师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你明白在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”
“此刻看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)
2、找间隔
“生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)
“我们的身边还有间隔吗,一起来找找吧!”
3、揭示课题
出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样秀丽的环境呢?”
“对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家明白吗?在我们数学王国里植树但是有必须的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)
二、自主探究,构建模型
师:“春天到了,为了美化校园,我们校园也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)
1、设计不同方案
师:“画一条线段表示12米的小路,你想怎样载就用示意图或线段图画出来吧!”教师巡视。
2、展示不同方案
投影仪展示学生的设计方案,问:“你是怎样画的?”
师板书三种状况,分别是:两端都栽,只栽一端,两端都不栽。
师:“这天这节课我们先来探讨两端都栽的状况。”
3、小组探索、加强体验
(1)提出问题
出示例1(课件9)学生默读题目,找出关键词并做解释。
师:“需要多少棵树苗呢?”指名说出不同的答案并板书。
师:“此刻出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。
(2)验证猜想
演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想明白吗?就是将复杂问题简单化,在那里100米太长了,我们能够先在短距离的路上种种看。”(出示课件10)
分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”
(3)总结规律
小组内填写表格,观察:“你发现了什么规律?”板书规律
“刚才通过画图明白了棵数,能不能通过计算得到呢?”
师:“根据刚才发现的规律你明白例1的答案了吗?会列式计算吗?”(出示课件11)
4、运用规律
(1)此刻我们的小手的5个手指看成5棵树,你能说说这天发现的规律吗?同桌相互说一说。
(2)出示课件12“比一比谁的反应快”在两端都栽的状况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?
三、巩固应用,内化提高
师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,我们来看看吧。
1、公共汽车上(出示课件13)
2、公路上(出示课件14)
3、上楼梯(出示课件15)
4、钟表上(出示课件16)
引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。
四、回顾整理,反思提升
师:通过这天的学习,你有什么收获?
“对!这天你们发现了植树问题中的重要规律,我们是怎样得到的?”“你还学到了什么方法?”(复杂问题简单化)
“收获方法比收获知识更重要,祝贺大家!”
板书设计:
植树问题
两端都栽
棵数=间隔数+1
间隔数=路长÷间距
路长=间隔数×间距
100÷5+1=21(棵)
四年级数学《植树问题》教学设计 7
教学目标:
1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:
发现并理解两端都栽的植树问题中间隔数与棵数的规律。
教学难点:
运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:
课件、直尺、学习纸。
教学过程:
(一)创设情境,引入新课
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)
教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)
(二)充分经历,探究新知
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
“两端要栽”是什么意思?“一边”是什么意思?
可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?
教师:为什么觉得很麻烦?
学生:因为100米里面有20个5米,太多了。
教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的.演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)
(3)动手操作,初步体验。
让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。
教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?
教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)
(6)即时巩固,强化规律。
教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)
3、运用规律,验证例1。
教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?
教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?
学生尝试列式解决问题,教师巡视,有针对性地指导。
全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?
(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)
(三)回归生活,实际应用
1、“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2、练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3、练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)
(四)课堂小结,畅谈收获。
反思:
通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。
一、创设愉悦氛围,让游戏走入情境。
从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
二、注重自主探索,让体验走入方法。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。
三、倡导知识运用,让建模走入生活。
“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。
但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。
四年级数学《植树问题》教学设计 8
【教学背景】
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。
【教学内容】
数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。
【教学目标】
知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。
过程与方法:主要让学生通过观察、操作、交流等活动探索新知。
情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。
【教学重、难点】
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
【教学准备】
课件
一、创设情境,揭示课题。
教师出示几幅有关北方沙尘暴的图片,引出植树的话题。
学生看完视频和照片说一说有什么感受?
治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)
【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】
二、引导探究,发现规律。
(出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)
(1)理解什么是每隔5米植一棵?下一棵怎么栽?
(2)介绍什么是一个间隔?学生指一指每一个间隔。
(3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)
【设计意图:把课本中的`例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】
①组织反馈交流
师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?
可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)
②学生汇报其他两种植法。
学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?
③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。
【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】
(4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)
20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。
【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】
(5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。
学生先想一想,再一起来看一看。
重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。
找一学生再来说一说,同桌两人说一说。
(6)学生独立尝试借助一一对应的数学思想解决另外两种植法。
【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】
小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。
(7)寻找三种不同的植法棵数与间隔数之间的关系。
观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。
学生汇报,教师板书。
小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。
【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】
精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。
四年级数学《植树问题》教学设计 9
教学内容:
人教版小学数学五年级上册第106页例1。
教学目标:
1、知识与技能目标:
(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。
(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。
2、过程与方法目标:
(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。
(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。
(3)、培养学生的合作意识,养成良好的交流习惯。
3、情感态度与价值观目标:
(1)、感受数学在生活中的广泛应用。
(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。
教学重点:
通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。
教学难点:
把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。
教学过程:
一、谜语导入。
(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)
谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?
(3)、认识间隔、间隔数。
(预设1:数字5,5个手指;数字4,4个手指缝。)
师:你观察得真认真!
师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)
(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。
师:你懂得真多,能告诉大家什么叫做间隔吗?
生口答,师出示手的图片,板书“间隔”和“间隔数”。)
(4)、认识生活中的“间隔”。
师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。
师:想一想,生活中还有哪些地方有间隔?
生充分交流
(5)、揭示并板书课题。
师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。
二、合作探索,了解三种植树方法
1、直接出示题目:
在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?
师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?
2、小组交流。
师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求
(1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;
(3)小组内说一说:你是怎样画的?
3、汇报。
师:谁来说一说,你栽了几棵树?谁还有不同的答案?
(2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的同学栽了3棵,咱就先请栽了5棵的.同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)
有哪些同学是4棵的?说说你是怎样栽的?
刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?
4、三种植树方法的命名。 师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)
1、出示题目信息:一条新修的公路,全长100米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?
2、理解题意。
(1)、从题目中你得到了哪些数学信息?
(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?
题目中,“两端都栽”是什么意思?
师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。
(3)、同学们大胆猜测一下,一共要栽多少棵?
(指名生答)
(4)、提出验证。
a:师:到底哪个结论是正确的呢?我们怎么来验证一下?
b:生尝试寻求方法。
生:可以画一画图。
师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)
(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。
师:现在栽了多少米了?就这样一直栽到100米处吗?
(预设生:太麻烦了,浪费时间)
(6)寻求“化繁为简”的数学方法。
师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?
生尝试发表自己的想法。
(预设生:50米、20米、10米
师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)
师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。
师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?
(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)
师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)
(二)、自主探究。
(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。
(2)、生独立填表。
(3)、汇报交流:谁把你的结果向大家展示一下?
(师:谁和他的结果一样请举手?
师:看来大家都做得非常认真!)
师:为了便于大家观察,我把表格展示在大屏幕上。
(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)
间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。
那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?
(5)、学生独立思考,充分交流。
结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。
(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?
学生口述答案。
师:你真了不起!
(三)、应用规律,解决问题。
(1)出示前面的例题。
师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?
(2)生找出正确解法。
(3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)
(师:你讲得太棒了!老师真心佩服你!)
(4)师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!
三、学以致用。
1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)
生独立审题,尝试在练习本上独立完成。
师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?
2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
生独立审题,尝试在练习本上独立完成。
这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?
3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?
(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
指名读题,理解题意。
师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)
(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)
大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。
汇报交流,说出思路。
四、全课总结。通过今天的学习,你有什么收获?
生充分交流。
师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。
拓展延伸:
现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?
四年级数学《植树问题》教学设计 10
教学内容:
人教版四年级下册《数学广角——植树问题》例一及相应练习
教材分析:
本册《数学广角》主要渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)
设计理念:
自主探索,凸显学生个性;合作探究,构建和谐课堂。
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重点:
从实际问题中发现植树问题(两端都种)的数学模型。
教学难点:
灵活运用植树问题(两端都种)的数量关系,正确解答生活中的实际问题。
教具准备:
课件、纸条、表格、直尺等。
教学过程:
一、课前交流,激趣导入
1、活动交流
师:同学们,我知道你们都聪明、好学、上进。今天我很高兴能与大家一起探索数的奥妙,你们欢迎吗?
谢谢你们的掌声。下面请大家伸出你们懂事的双手,让老师看一看,可以吗?
大家认真地看一看,将来我们就是要凭借这一双手,创造我们的幸福生活。
同样也是这一双手,还藏着很多数学奥秘,你们想知道吗?
2、教学“间隔”含义
师:看着老师举起的这只右手,你们看见了几个手指?
学生齐说:“5个手指头”。
师:很好。你们再看看,这5个手指间有几个空格?
生:4个
师:很好!在数学上我们把这样的“空格”叫做间隔(板书)。
大家再仔细观察自己的手,5个手指之间有4个间隔。那么,4个手指间有几个间隔呢?3个手指,2个手指呢?同桌互相说一说。
师:你们发现手指数与间隔数的规律了吗?谁能勇敢地站起来告诉老师吗?
答案:手指的个数比间隔数多“1”或间隔数比手指少1。
3、导入课题
实际生活中的“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔。
今天,我们就以植树为例,一起来探索数学里间隔的奥秘。(板书课题:植树问题)
课前导入这一部分,学生配合的比较好。而且学生之间发现“手指数与间隔数之间的联系”,这是非常好的,但是,我在这觉得这样是不是有点多余。可是我又觉得这里,让学生初步的感知这一数量之间的关系,其实是一个铺垫作用。想想也有此理。
二、动手操作,初步感知
1、创设情景(课件出示)
师:我们学校为了进一步美化校园环境,准备在学校门口这条路的一
边种上白桦树。
师:你们想不想看看学校打算怎么种吗?我们一起来看看具体要求吧!
2、理解题意
[出示要求]:我们学校准备在学校门口长100米的这条路一边种上白桦树,每隔5米栽一棵(两端都栽),请问一共需要多少棵树苗?
师:我想请一个同学来读一读,从这份要求,你能获得哪些信息?同学们可以小声交流一下,然后把你们交流的结果向全班同学汇报。(师根据学生汇报板书:总长、间距、间隔数、棵树)。
师:两端都栽你们怎么认为的呢?
指名说一说,然后师实物演示。
师:每隔5米是什么意思?你能用自己理解的方式来告诉你的同学吗?
教师在学生汇报的基础上归纳小结。(两棵树之间的距离是五米,每两棵树的距离都相等,两棵树之间的间距是5米)
师:好,你们能帮帮老师算一算,学校需要准备多少棵树苗呢?
3、自主探究
生:自由做题
师:指点几个学生上台板演。同学们做完了吗?我们看同样的要求却出现了不同的答案。你们同意哪个呢?那学校究竟该买多少棵树苗呢?是20还是21……
这个环节,不知是不是学生基础比较差,还是……我从学生的小组中发现只有一种答案没有别的,别的就是很离谱的过程。这里学生只知道100/5=20(棵)这一答案。这样使我在讲时就有点难。
师:这样吧同学们以小组为单位,听清楚要求:利用你们准备的学具摆一摆。也可以用一条线段来代表100米的小路,用你们喜欢的图案表示树。把你们小组的想法在纸上画一画。(小组活动)
4、汇报交流,展示思路
师:同学们,你们探究出结果了吗?
生:画线段的方法
生:摆火柴的方法……
师:初步推出棵数=间隔数+1(板书棵数)
这里学生们有一部分的学生知道通过摆一摆的方法去探究出实际需要21棵。但是没有学生知道用线段来画,许多的学生不知所措。不知道怎么做。我在想是不是我讲解不清楚,可是有一部分的学生可以通过摆一摆得出这个规律呀。这可能对学生了解不够深吧。也许该用更简单的方法去授课。用20米长的小路,也许会有更好点的效果。
三、合作探究,发现规律。
1、探索规律
学生汇报,师也同时在黑板具体教学摆一摆及画线段图的方法。进一步理解间距、间隔数
师:学生都表现的不错,我们再来看一下这种规律发现过程。这是一条100米的小路,学校要求两端都栽,我先在一头栽上一棵树,隔5米栽一棵,隔5米栽一棵。现在是几棵树,几个间隔,现在呢?这又是几棵树,几个间隔……。好了,我不栽了。请同学们想一想6棵树几个间隔,8棵树几个间隔,10棵树几个间隔,100棵树几个间隔,那15个间隔几棵树,18个间隔几棵树,那20个间隔几棵树。
师:从中你们发现了什么规律?
生:(指名回答,要强调是在什么情况下。)棵数比间隔数多1,间隔数比棵数少1。
师小结:两端都栽的情况下:“间隔数+1=棵数”
“间隔数=棵数-1”(板书)
请同学自己读一读。
师:同学们,在两端都栽的情况下,棵数与间隔数有什么关系?
请同学错的上台订正。
师:同学们,我们在刚才探讨了在100米的小路上,两端都栽,每隔5米栽一棵,需要21棵树苗。我代表学校谢谢你们。
2、运用规律
师:如果让你来设计我们学校这条小路的植树方案,还是这100米长的小路的.一边(两端都栽)还可以每隔几米栽一棵?(整米数)
出示:表格。
师:根据学生汇报,完成表格。这一部分可能是多余的。我在授课时,发现这样填表格起不了什么大的作用。
四、应用规律,解决问题。
师:现在我们得用用这个规律来解决数学问题
师:还是这条小路,假如每隔两米栽一棵,在两端都要栽的情况下,需要几棵树苗呢?请你们口答这题。
师:假如现在这条小路延长到200米,还是每隔5米一棵(两端都栽),需要几棵树苗呢?
师:如果我种了5棵树,每隔5米栽一棵,从第一棵到最后一棵全长多少米呢。
师:真棒,我发现学生学的非常的认真!我们刚据探讨出来的规律就运用的这么好。老师真佩服大家。运用植树的规律不仅能解决植树的问题,还能解决我们生活的实际问题。其实在日常生活中,在我们的周围有很多类似于植树问题的事件,同学们你能列举一些这样的事例吗?(学生汇报后,师用课件展示生活中的事例图片。)
师再出示:安装路灯、电线杆、设立车站、摆花盆、走楼梯、建楼房、排队做早操等等。
五、提升思维,巩固练习
师:看来,数学知识与我们的实际生活有很密切的联系,我们平时一定认真观察,多留心身边的事物。
师:运用今天所学的知识我们可以解决生活中一些相关的实际问题。
1、做一做
在全长1000米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?
2、想一想
在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?
3、猜一猜。
甲、乙、丙谁说的对?
有100人参加春游活动,这列队伍中如果每两人平均距离是1米,请问这列队伍全长多少米?
甲说:100米
乙说:99米
丙说:101米
六、质疑:学习到这里,同学们想一想有没有什么不明白的地方,有的可以提出来我们一起解决。
七、归纳:(同学们学得真不错,让我们一起完成一首儿歌吧!)教学儿歌
小树苗,栽一栽,
两端都栽问题来,
间数多1是棵数,
棵数少1是间数,
怎样求出间隔数?
全长除以间长度。
八、课堂小结,课外延伸
师:同学们坐好了,这节课上同学们个个都表现得特别棒,积极思考,涌跃回答问题,这一却都给了我快乐,给了我鼓励,和同学们在一起我很幸福,你们快乐吗?那你又有什么收获呢?谁能说说。
这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。
板书:植树问题
总长间距间隔数棵数
20米5米45棵
20÷5=44+1=5(棵)
两端都要栽:间隔数+1=植树棵数
间隔数=植树棵数-1
间隔数=总长度÷间隔
教学反思:
不足之处
一、设计基本可以,但任务没有完成。
基本上没有讲练习,课前准备的练习都没有去练。因为没有时间。所有的时间都花在的探讨之中,所以时间不够。
二、前松,好!后紧,乱!
由于,前面时间把握不够好,时间大多数都花掉了,到了后面就很紧,由此而乱。在教学儿歌时就草草的收场了。
我觉得这节课,自己还是比较满意的。我对自己说,又有一次大的进步。从无形中就提高了自己。我感谢这次的活动机会。在这节课的突破了重难点,学生能自己得出这个规律,我已很满足。在上课之前,我都担心突破不了。
四年级数学《植树问题》教学设计 11
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件
教学过程:
一、初步感知间隔的含义
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一起弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)
二、探究规律,解决问题。
1、找出两端都种树的规律
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的.问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,
棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有( )个间隔。
2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。
3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?
(二)闯关题
1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
五、作业设计
实地考察
六、板书设计:植树问题
两端要栽:棵数=间隔数+1;
【四年级数学《植树问题》教学设计】相关文章:
数学《植树问题》教学设计(精选15篇)04-02
《植树问题》教学设计10-14
《植树问题》教学设计04-26
植树问题的教学设计02-28
植树问题教学设计优秀04-19
植树问题教学设计范文05-05
植树问题的教学设计评析02-27
人教版《植树问题》教学设计04-23
数学《植树问题》教学反思04-21