六年级上册数学教学设计

时间:2024-08-15 04:01:58 教学设计 我要投稿

六年级上册数学教学设计

  作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写呢?下面是小编帮大家整理的六年级上册数学教学设计,仅供参考,希望能够帮助到大家。

六年级上册数学教学设计

六年级上册数学教学设计1

  教学目标

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  一、复习

  出示复习题。

  1、根据题意列出算式:

  5个12是多少?

  3个14是多少?

  2、下列句子中那些可以看做单位1

  猎豹的速度是狮子的七分之三。

  参加合唱队的同学占全班人数的五分之一。

  红花比黄花多二分之一。

  十月比九月节约四分之三。

  3、计算:3/10 +3/ 10 + 3/10 =

  3/10 + 3/10+ 3/10这题我们还可以怎么计算?

  今天我们就来学习分数乘法。

  二、新授

  1、利用3/10 + 3/10 + 3/10教学分数乘法。

  (1)这道加法算式中,加数各是多少?(都是3/10)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

  (3)3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,

  所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?

  谁能把它补充完整

  2、出示例1,

  (1)理解题意:

  引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,

  “人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

  跳一下的'2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?

  (列式:2/11×3 = 6/11)

  有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

  3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示3/8×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  6。练一练,课件出示,学生独立计算。然后订正。

  三、巩固练习

  比赛:

  第一回合

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  第二回合

  2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  四、课堂总结:

  今天你有什么收获?

  五、布置作业:

  练习二第1、2、4题。

六年级上册数学教学设计2

  单元目标:

  1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

  2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

  3、独立自学,使学生初步认识弧、圆心角和扇形。

  4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

  5、通过介绍圆周率的史料,使学生受到爱国主义教育。

  单元重点:

  1、认识圆和轴对称图形;

  2、掌握圆的周长和面积的计算公式。

  单元难点:

  理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

  第一课时:

  圆的认识

  教学目标:

  1、学生认识圆,掌握圆的特征,理解直径与半径的关系。

  2、会使使用工具画圆。

  3、培养学生观察、分析、综合、概括及动手操作能力。

  教学重点:

  圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

  教学难点:

  画圆的方法,认识圆的特征。

  教学过程:

  一、自学

  1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征? 长方形正方形平行四边形三角形梯形

  2、示圆片图形:圆是用什么线围成的?(曲线图形)

  3、举例:生活中有哪些圆形的物体?

  二、议学

  (一)认识圆的特征。

  1、学生自己在准备好的纸上画一个圆,并动手剪下。

  2、动手折一折。

  (1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)

  (2)再折出另外两条折痕,看看圆心是否相同。

  3、认识直径和半径。

  (1)将折痕用铅笔画出来,比一比是否相等?

  (2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

  (3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

  4、讨论:

  (1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

  (2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

  (3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。 在同一个圆里,有无数条半径,且所有的半径都相等。

  5、直径与半径的关系。

  学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

  得出结论:在同一个圆里,

  6、巩固练习:课本57“做一做”的第1-4题。

  (二)画圆

  1、介绍圆规的各部分名称及使用方法。

  2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

  三、悟学

  (一)巩固练习

  1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

  2、判断,并说为什么。

  (1)半径的长短决定圆的大小。()

  (2)圆心决定圆的位置。()

  (3)直径是半径的2倍。()

  (4)圆的半径都相等。()

  3、思考题:在操场如何画半径是5米的大圆?

  (二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?

  (三)作业:课本58页第5-8题。

  第二课时:

  圆的面积

  教学目标:

  1、学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

  2、培养学生的观察、比较、概括和动手操作的能力。

  3、对学生进行爱国主义教育。

  教学重点:

  圆的周长和圆周率的意义,圆周长公式的推导过程。

  教学难点:

  圆周长公式的推导过程。

  教学过程:

  一、自学:认识圆的周长

  1、出示一个正方形。

  这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系?C=4a

  2、什么是圆的周长?

  让学生上前比划,圆的周长在那?那一部分是圆的周长? 得出定义:围成圆的曲线的'长叫做圆的周长。

  二、议学:

  1、圆周长的公式推导

  (1)你可以用什么办法知道一个圆的周长是多少?

  (2)学生各抒己见,分别讨论说出自己的方法:

  A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

  B、把圆放在直尺上滚动一周,直接量出圆的周长。

  C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

  用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

  2、动手实践。

  (1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

  (2)引生看表,问你们看周长与直径的比值有什么关系?

  (3)你有办法验证圆的周长总是直径的3倍多一点吗?

  (4)阅读课本P62,介绍圆周率,及介绍祖冲之。

  3、解决新问题。

  教学例1圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周? 第一个问题:已知d=20米求:C=? 根据C=πd20×3.14=62.8(m)

  第二个问题:已知:小自行车d=50cm先求小自行车C=?c=πd50cm=0.5m0.5×3.14=1.57(m) 再求绕花坛一周车轮大约转动多少周? 62.8÷1.57=40(周)

  答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

  三、巩固练习。

  1、求下列各题的周长。书本62页练习题

  2、判断正误。

  (1)圆的周长是直径的3.14倍。

  (2)在同圆或等圆中,圆的周长是半径的6.28倍。

  (3)C=2πr=πd

  (4)半圆的周长是圆周长的一半。

  四、作业。P64做一做,练习十五的第

  5、8题

  第三课时:

  圆的周长

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、自学:

  1、口答。4π 2π 5π 10π 8π

  2、求出下面各圆的周长。

  二、议学:

  1、提出研究的问题。

  (1)你知道Π表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?C=πdC=2πr

  (3)根据上两个公式,你能知道:

  直径=周长÷圆周率半径=周长÷(圆周率×2)

  2、练习题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数) 已知:c=3.77m求:d=?

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c÷(2Π)求:r=?

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。 ⑴3.14×8⑵3.14×8×2⑶3.14×8÷2+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20×2×3.14=125.6(厘米) 45分钟走了多少厘米?125.6×=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

六年级上册数学教学设计3

  1.简单而富有内涵的引入

  余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

  有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的.数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

  2.自发而科学严谨的探究

  关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

  3.数学思想和文化的渗透

  在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

  思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

六年级上册数学教学设计4

  教学目标

  1.依据小数、分数和百分数的意义,引导学生开展自主探索,理解和掌握将分数、小数化成百分数的方法。

  2.会解决求一个数是另一个数的百分之几的问题。在求命中率的基础上,理解更多生活中的百分率的实际含义,感受百分率在生活中应用的广泛性。

  3.进一步明确百分率与分数的联系和区别,培养学生比较分析、归纳概括的思维能力。

  重点:掌握小数、分数化成百分数的方法。

  难点:理解生活中百分率的实际含义。

  教学过程

  课件出示教材第84页主题图。

  师:王涛和李强是各自篮球队的主要得分手。在一场比赛后,他们之间有这样一段对话,从图中你能获得哪些信息?

  生:王涛是5投3中,李强是6投4中。

  师:根据这两条信息,老师想知道谁的'投篮更准,该怎么比较呢?

  学生计算,指名回答。

  生1:3÷5=0.6,4÷6≈0.67,因为0.6<0.67,所以李强的投篮更准。

  生2:3÷5=,4÷6=,因为<,所以李强的投篮更准。

  教师:这两种算法有什么相同的地方?(算式相同)都是求什么?(命中率,即投中的次数占投篮总次数的几分之几)有什么不同呢?(一个是用小数表示结果,一个是用分数表示结果。)

  1.揭示命中率。

  师:这种计算的方法,与篮球比赛技术统计中的投篮命中率类似。请从百分数的意义出发进行思考,什么叫“投篮命中率”?(投篮命中率表示投中次数占投篮总次数的百分之几。)

  师:该如何计算呢?(投篮命中率=。)

  师:这个题目的问题是“他们两人的命中率分别是多少?谁的命中率高?”。

  2.小数、分数化成百分数。

  师:投篮命中率是一个什么数?(百分数)你能把刚才的两种运算结果转化成百分数吗? (学生练习,指名回答。)

  生1:3÷5=0.6==60%。

  师:你是怎么做的?(把小数化成分母是100的分数,再化成百分数。)

  生2:3÷5====60%。

  师:4÷6除不尽,怎么办?(除不尽时,通常保留三位小数。)

  生:4÷6≈0.667==66.7%或4÷6=≈0.667=66.7%。

  师:你能解释这里的“≈”和“=”符号的用法吗?(4÷6除不尽,保留三位小数约等于0.667。然后把0.667这个小数转化为分母是1000的分数。)

  师:这样我们已经分别计算出了两个人的命中率,谁更高些?(李强。)

  3.引导归纳,得出方法。

  课件出示0.667=66.7%。

  师:你能理解这样的表示方法吗?(把小数点向右移动两位,再加上百分号。)

  师:把小数点向右移动两位意味着什么?(把这个数扩大了100倍。)

  师:加上百分号意味着什么?(把这个数缩小了100倍。)

  师:我们一起来归纳将小数、分数化成百分数的方法。

  引导式总结:把小数、分数化成百分数,可以化成分母是100的分数,(不能转化的保留三位小数)再化成百分数;

  也可以先将分数化成小数,(除不尽的保留三位小数)再将小数点向右移动两位,加上百分号。

  师:刚才我们计算的投篮命中率,表示投中次数是投篮总次数的百分之几。可以表示成投篮命中率=×100%的形式。为什么要“×100%”呢?

  预设:因为求的是百分率,要用百分数的形式表示。在后面添上“×100%”确保结果是百分数的形式。

  师:在实际生活中,像上面这样常用的百分率还有许多。如学生的出勤率、绿豆的发芽率、产品的合格率、小麦的出粉率、树木的成活率等。你能表示出求这些百分率的式子吗?(学生练习,指名回答。)

  小结:百分率表示一个数是另一个数的百分之几,它在我们生活中的应用非常广泛。

  1.生物小组进行玉米种子发芽试验,每次试验结果如下:

  试验次数 试验种子数 发芽种子数/粒 发芽率

  1 300 285 2 300 282 2 300 294 4 300 291

  师:从结果中我们可以直接看出哪一次实验的发芽率最高?哪一次最低?(让学生感受百分率的实际作用。)

  2.把下面的小数和分数改写成百分数。

  0.970.081.0051.9910.025 3.你能联系实际说一说哪些百分率不可能达到100%,哪些可能达到100%,哪些可能超过100%吗?

  通过这节课的学习,说说你有什么收获?还有什么疑问?

  教学反思

  根据学生已有的知识,放手让学生自主探究小数、分数化成百分数的方法。在整个教学活动中,利用教师的合理揭示、适时点拨、引导归纳,使学生的探究活动呈现出较强的层次性。这样的过程既符合学生的思维特征,又有利于知识的理解和掌握。通过分析各种百分率所表示的意义,不仅使学生体会到这一知识在生活中的广泛应用,也对求百分率的方法有了更为深刻的理解。

六年级上册数学教学设计5

  教学内容:

  新课标人教版六年级上册第99~100页。

  教学目标:

  1、知识技能目标:理解本金、利息和利率的含义,掌握利息的计算方法,会利用利息的计算公式进行一些有关利息的简单计算。

  2、情感性目标:在合作与交流的过程中获得良好的情感体验及口头表达能力,感受到生活中处处有数学。

  3、实践性目标:学生在调查实践中了解储蓄的意义、种类,培养学生搜集处理信息的能力。

  4、体验性目标:让学生在解决问题的过程中,进一步体验数学与生活的联系,增强数学意识,发展数学思维。

  (设计意图:关注学生发展,整合教学目标,新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。对于本课的设计,本着新课标的基本理念,“人人都能获得良好的数学教育”,让学生通过对不同存款方式的操作,体验到货币的升值,也感受到不同的存款方式所带来的不同收益,更重要的是让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。)

  教学重点:

  掌握利息的计算方法。

  教学难点:

  税后利息的计算。

  课前调查:

  银行储蓄凭证。

  教具准备:

  课前搜集的有关利息的信息、多媒体课件、银行存款单、计算器、有关利率表格。

  教学过程:

  (设计意图:遵循《数学课程标准》的要求,从学生的认识发展水平和已有的知识经验出发,逐步构建起关于外界的知识,从而使自身知识结构将得到发展。为此,本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照以“以学生为本”的思想,共分为四个教学层次,

  一、创设情境,生成问题

  二、探索交流,解决问题,

  三、巩固应用,内化提高

  四、回顾整理,反思提升。)

  课前自学

  1、预习课本P99~100

  2、课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。

  3、向家长或银行工作人员了解课本上的相关内容。如储蓄的种类,银行存款的年利率、如何填写存款凭条等。

  (设计意图:数学知识来源于生活,应用于生活。在学习新知前,先让学生预习课本。增强学生的感性认识,为帮助学生确实学好这部分知识打下基础。让学生分组进行有关储蓄知识的调查,组织学生进行有关的实践活动,培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力)

  一、创设情境生成问题

  1、开一个关于利率的发布会。

  师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。

  根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

  (设计意图:情境的创设,不仅充分调动了学生的学习积极性,而且为学生提供了从事数学活动的机会。学生通过课前的调查充分感知储蓄的益处,在不知不觉中学到了知识。以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系,起到了开动思维的作用,使学生乐于参与数学活动。)

  二、探索交流解决问题

  1、感知利息。

  师:近年来,我们沂南县始终坚持富民优先的发展思路,以发展民营经济作为经济发展的主体工程,收到了显著成效。很多人家里都有了暂时不用的钱,你知道他们是怎样处理这些钱的吗?

  生:存入银行......

  师:人们常常把暂时不用的.钱存入银行储蓄起来。那储蓄有什么好处呢?

  生:放在银行比较安全;可以得到利息。

  师:取款时,银行多支付的钱叫做利息。(板书:利息)

  小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。

  学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。

  (设计意图:根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力。)

  2、存款的方式。

  师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

  出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。

  我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?

  这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。

  这是老师的一张存款单(课件出示存款单,钱数:1000元、时间:一年、方式:定期),你能从这张存单上得到哪些信息,你是如何理解这些信息的?

  学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。

  学生观察讨论。

  我们先来交流一下你能理解的信息。

  生:我知道老师是在中国人民银行存的款。

  师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)

  生:我还知道老师存款的方式是定期存款。

  什么是定期存款的存款方式?那你知道存款的其他方式吗?

  生:整存整取,零存整取,定活两便、活期存款等

  生:我知道老师存的是一千元人民币。

  师:银行还办理外币储蓄。

  (设计意图:传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。联系实际增加学生的感性认识,教材中还给出一张银行用的存款凭条和利息的计算公式,让学生知道在实际生产生活中的简单应用及简单的计算。这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。)

  3、认识本金、利息、利率;明白利息的计算方法。

  通过课前的自学,你知道这一千元就叫……?对,我们把存入银行的钱叫做本金。

  生:我还看到利率是百分之二点二五。

  你知道什么叫利率吗?

  利息/本金=利率(老师板书)

  师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?

  关于利率,你们还知道什么?

  ………

  师:同学们了解的还真不少,你们能帮老师算算到期后老师可以得到多少利息?该如何计算呢?

  生:“利息/本金=利率”。我还知道:利息=本金×利率。

  师:既然大家已经知道了怎么样计算利息了,大家就来帮助老师计算一下,一年后我能得到多少利息?

  师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。

  学生可能出现下面三个算式:

  1)20xx×2.25%×22)20xx×2.70%×23)20xx×2.70%比较三个算式:

  1)2.25%是一年的年利率,2.70%是定期二年的年利率

  2)让学生说说自己的看法。

  生1:定期二年得到的利息等于本金乘二年期的利率。

  生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。

  师把公式填写完整:利息=本金×利率×时间(板书:×时间)

  小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。

  (设计意图:完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设了思维的空间,探究的空间,交流的空间,注重了让学生经历知识的产生过程,即培养了学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)

  4、学习利息税知识:

  师:大家都算出了我应得的利息,但实际上我并不能得到你们算出的利息,你们知道为什么吗?

  教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?

  生:要扣除利息所得税,要扣除20%的利息所得税。

  师:那老师到期后能得到多少税后利息呢?

  学生计算后小组交流,生列式计算,允许用计算器。

  然后归纳公式

  税后利息=本金×利率×时间×(1-20%)(板书)

  教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。

  小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。

  (设计意图:在引导学生探究学习的过程中,层层分析含义、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的关系,巧妙突破教学难点。让学生运用所学知识解决实际问题,在解决实际问题的同时,提高学生灵活运用知识的能力,同是针对利息税,进行公民要依法纳税的教育,提高学生的纳税意识。)

  (设计意图:学生各种能力的形成和发展是我们教学的首要任务。学生在自主探索和合作交流中,对知识的理解与把握非常深刻。为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。教学中还注重沟通师生的情感因素,面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。)

  三、巩固应用内化提高

  1、基本应用:

  (1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。

  在弄清以上这些相关概念之后,学生尝试解答例题。

  在学生独立审题解答的基础上订正。

  板书:

  方法一方法二

  1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)22.50×20%=4.50(元)1000+22.50×(1-20%)

  1000+22.50-4.50=1018(元)=1018(元)

  答:一年后王奶奶可以取回1018元。

  师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。

  (2)、学生完成第100页的“做一做”。下面是张叔叔到银行存款时填写的存款凭证。到期时张叔叔可以取回多少钱?

  四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)

  这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。

  (3)、102页第

  6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。

  2、综合应用

  (1)、王大爷在20xx年1月1日把10000元定期存款二年,可是在20xx年8月1日,急需用钱,你帮王大爷出出主意,该怎么办呢?

  让学生明白,如果定期存款中途取时,只能按活期算

  生:可以先向别人借钱,等存款到期后,再归还借款。

  生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。

  这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。

  (2)、课后实践、体验储蓄过程

  师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。

  (设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)

  四、回顾整理反思提升

  通过本课的学习,你有什么收获?

  (设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)

  板书设计

  利率

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  (设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)

六年级上册数学教学设计6

  教学目标:

  知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

  理解在同一个圆内直径与半径的关系。

  能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;

  转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。

  德育目标:让学生养成在交流、合作中获得新知的习惯。

  教学重点:探索出圆各部分的名称、特征及关系。

  教学难点:通过动手操作体会圆的特征。

  教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。

  教学过程:

  一、创设情境、激发兴趣:

  1、创设情境

  师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。

  师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?

  生:因为一号的赛车,轮子是圆的。

  师:其它的车手为什么会比一号的赛车慢呢?

  生:因为它们的轮子是方形,是三角形,有棱有角的。

  2、联系生活、举例说明

  师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。

  师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的.生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识

  二、自主探索,初步体验:

  1、第一次自主探索画一画。

  师:你能创造出一个任意大小的圆吗?

  生:能。

  师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?

  学生进行小组合作,分工创造圆。

  生:进行小组反馈。

  教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……

  师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?

  学生说一说各种画法的缺陷:(

  1、利用圆形轮廓描和印圆,方便但圆的大小固定。

  2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。

  3、旋转形成圆不能留下痕迹。

  4、圆规画圆,方便且一定大小的圆都能画)

  师:那你认为这么多方法中用什么画圆最科学最方便?

  生:用圆规画圆最方便。

  2、第二次尝试画一画-----用圆规画圆。

  师:那请同学们用圆规自已尝试画一个圆。

  没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

  生:(

  1、画移位的,

  2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

  学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)

  师:学生根据老师的讲解独立画圆。

  师:大家画的圆的位置都一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为刚针戳的位置不一样,(或点的位置不一样)

  师:看来这个点能决定圆的位置,(板书:能决定圆的位置)

  师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为我们圆规的开口大小不一样。

  生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

  师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。

  三、认识圆各部分名称及探究其特征:

  ①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)

  提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)

  师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)

  师:圆心一般用字母o来表示。(板书:o)

  教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。

  游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。

  ②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  通过测量引导学生发现:圆心到圆上任意一点的距离都相等。

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)

  提问:谁能说一说什么样的线段叫做半径?

  教师说明:半径一般用字母r来表示。(板书:r)

  教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?

  启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。

  ③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)

  学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)

  提问:谁能说一说,什么样的线段叫做直径?

  启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。

  教师说明:直径一般用字母“d”来表示。(板书:d)

  教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?

  引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。

  ④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?

  ⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)

  引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。

  师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。

  师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)

  ⑥练习:出示课件填表。

  ⑦巩固练习:出示判断题。

  四、转回课前问题:

  为什么车轮做成圆形的能得冠军呢?

  (让学生结合今天所学知识解决此题。)

  五、课后作业:

  用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。

  六、板书设计:

  圆的认识

  圆心O ——能决定圆的位置(定点)

  半径r

  ——能决定圆的大小(定长)

  直径d

  同圆半径

  无数条且长度相等

  (等圆)直径

  d=2r或r=d=

六年级上册数学教学设计7

  教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的.比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

六年级上册数学教学设计8

  教学目的

  1、通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点:

  圆面积计算

  教学难点:

  公式以及推导。

  教学过程

  一、复习并引入课题。

  1、口算:2π 9。42÷π 12。56÷π

  2、已知圆的半径是2。5分米,它的周长是多少?

  3、一个长方形的长是6。2米,宽是4米,它的面积是多少?

  4、说出平行四边形的面积公式是怎样推导出来的?

  5、出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1、圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的.大小,叫做圆的面积。)

  2、圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

  3、圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

  回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1、根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。

六年级上册数学教学设计9

  教学目标

  使学生在具体情境中初步理解东偏北(南)、西偏南(北)等方向的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性和合理性。进一步培养学生观察能力、识图能力和有条理地进行表达的能力,发展空间观念。

  教学重难点

  重点:通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法;在情境中学生能根据方向和距离确定物体的位置,并描述简单的路线图。

  难点:通过解决实际问题,使学生能根据方向和距离确定物体的位置,并能描述简单的路线图。

  教学过程

  一、设置情景,导入新课

  同学们,你们看过《龟兔赛跑》的故事吗?生说看过。谁知道比赛的结果是谁赢了?一起说乌龟。为什么是乌龟赢了?生说:因为兔子睡了一觉。兔子知道自己错了。今天又要跟乌龟再比赛赛跑:

  请看《龟兔赛跑续集》

  观看龟兔赛跑图片,导入课题。

  小兔为什么又会输?生笑着说这是因为小兔跑错方向了。怎样才能走到终点呢?由哪几个要素决定?今天我们就来研究有关于:终点在起点什么方向上?终点和起点相距多远?

  带着这两个问题,

  我们来学习今天的新课:位置

  同学们,我们已经学习了哪些方位?生:东,南,西,北四个方位。还有呢?生:东南,西南,东北,西北。我们已经学习了8个方位。课件出示。

  二、自主探究,合作交流

  每年我国的沿海地区都会受到台风的侵扰。瞧,这是某年的一个强台风位置图,请测算一下。

  (一)教学例1

  1、现在台风中心的位置。(课件出示)

  目前台风中心位于A市东偏南30°方向、距A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  台风大约多少个小时后到达A市?

  2、东偏南30°是什么意思?如果只有这个条件,能否确定台风中心的具体位置吗?

  3、如果这样预告会发生什么情况?这样确定方向准确吗?怎样预告会更加的准确?

  4、还要预告什么?(距离)

  (距离600千米)如果没有距离又会怎样?

  5、小结:预告台风时既要说方向又要说距离。强调:东偏南30°还可以怎样表示?也可以说成南偏东60°,但在生活中一般我们先说与物体所在方向离得较近(夹角较小)的方位。 6。口答:台风大约多少个小时后到达A市?

  7、练习:完成教科书第20页的做一做。

  先让学生独立完成,让学生操作中经历知识的形成过程,然后集体订正。

  (二)教学例2

  1、课件出示:台风到达A市后,改变方向向B市移动。受台风影响,C市也将有大到暴雨。 B市位于A市北偏西30°方向、距离A市200km。C市在A市正北方,距离A市300km 。请你在例1的图标中标出B市、C市的位置。

  2、怎样表示距离呢?

  先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出200km?从而帮助学生确定比例尺,和图上距离。用1cm表示100km比较合适。

  3、学生独立完成,集体订正。

  4、订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

  通过刚才的学习,你觉得怎样确定物体的位置?

  教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

  根据方向和距离可以确定物体所在的位置。

  5、口答:台风到达A市后,移动速度变为40km/时,几小时后到达B市?

  6、练习:完成教科书第21页的做一做,打开课本第21页的做一做:

  (1)有关信息:

  教学楼在校门的正北方向150米处。

  图书馆在校门的北偏东35度方向150米处。体育馆在校门西偏北40度方向200米处。

  (2)师:要在平面图上准确地标出一个地方的位置,你认为需要考虑哪几个方面?

  (3)师生共同梳理:A、先确定好平面图的中心。 B、确定方向和距离。

  (4)自主操作,独立绘制平面图。

  (5)指名展示交流,完善绘图过程。

  学生展示绘制的图,并演示过程,其他学生评议补充。

  看来画图的过程有点复杂,让我们一起再来回顾一下整个过程。画图的`过程和方法清楚了吗?刚才你们是不是这样画的?

  三、知识反馈,巩固应用

  看来同学们对本届的知识掌握的还不错。现在你们有勇气来挑战自我吗?

  课件出示:

  1、警察局收到卧底送来的示意图

  (1)犯罪分子1在警察局的()方向,距离是()米。

  (2)犯罪分子2在警察局的()向,距离是()米。

  (3)犯罪分子3在警察局的()方向,距离是()米。

  2、做一做,课件出示,独立完成后订正。

  四、课堂小结

  这节课你的最大收获是什么?你还有什么不懂的地方?

  位置与方向,生活常遇到,

  要想定位置,两点要记牢:

  方向是首要,距离少不了。

  五、拓展延伸

  同学们的收获可真不少,你们能用今天所学的知识创作一幅学校建筑平面图吗?自己开始试一试吧!

六年级上册数学教学设计10

  【学材简析】

  人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

  【设计理念】

  百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

  【教学策略】

  本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

  【教学目标】

  知识与技能:

  1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

  2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

  3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

  4、使学生形成积极的学习情感,养成良好的学习习惯。

  过程与方法:

  经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

  情感、态度、价值观:

  体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

  【教学重点难点】

  重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

  2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

  难点:税后利息的计算。

  【教学准备】

  多媒体课件。

  【教学过程】

  (一)复习百分数的意义。

  教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。 (板书:百分数的整理与复习)

  1、复习百分数的意义。

  (表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)

  2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)

  3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

  小数化成百分数:先把小数点向右移动两位,同时添上百分号。

  百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

  分数化成百分数:先把分数化成小数,再化成百分数。

  百分数化成分数:先把百分数写成分母是100的分数,再化简。

  【设计意图:通过整理使学生对百分数的意义进行回顾,使学生把各类知识联系起来,系统性的建构知识。百分数和小数、分数的互化,让学生自己探索,再通过“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。为后面学习百分数的计算和应用打下了基础。】

  (二)根据信息,请同学们提出相关的百分数问题。

  (小组讨论、交流)

  老师今年36岁,丁俊同学今年12岁。

  问题:1、老师的岁数是丁俊同学的百分之几?

  2、丁俊同学的岁数是老师的百分之几?

  3、老师的岁数比丁俊同学的大百分之几?

  4、丁俊同学的岁数比老师的少百分之几?

  【设计意图:让学生自己根据给出的信息提出数学问题,并独立解答,不仅使学生进一步理解了求一个数是另一个数的百分之几问题的结构,掌握了解决问题的方法,而且沟通了知识之间的联系,有利于学生建构自己的知识框架,形成完善的知识体系。】

  (三)复习稍复杂的百分数应用。

  我校男生人数比女生少10%。

  问:1、男生人数是女生人数的百分之几?

  (指名回答)

  2、已知女生人数有500人,求男生有多少人?

  (单位“1”是已知的)

  3、已知男生人数有450人,求女生有多少人?

  (单位“1”是未知的)

  【设计意图:通过各种变式练习,运用对应思想,数行结合思想,转化思想等,让学生在“联”中求“变”,掌握解决问题的各种思路与方法,达到熟练解决问题的能力。】

  (四)复习百分数在生活中的应用:折扣、纳税、利息。

  1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

  问:什么等于折扣?

  2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

  问:应纳税额等于什么?

  3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

  问:什么是利息?如何计算利息?在计算利息时要注意什么?

  4、计算:王叔叔20xx年买了2000元国债,定期三年。三年国债的利率为5.4%。由于买国债可以免交5%的'利息税,王叔叔可以免交利息税多少元?到期时,王叔叔可以取回多少钱?

  【设计意图:让学生敏锐的数学眼光和灵活的数学思维在提出问题和解决问题中得到训练和发展,同时学生在解决问题的过程中对“求一个数的百分之几是多少”问题结构更加明晰,思路更具条理性,也再次突现了数学的实用价值。】

  (五)综合练习:

  1、方方说:“书价是30元,书店给打了九折。”毛毛说:“我付的钱数是方方所付钱数的50%。”园园说:“我付的钱数是方方所付钱数的13 ”丁丁说:“我付的钱数是方方所付钱数的1.5倍。”请问他们各付了多少钱呢?

  【设计意图:创设开放性情境,为学生提供信息,并让学生选择相关信息来解决实际的问题,给学生提供了广阔的思维空间,通过对比,渗透了问题解决策略多样化的思想,培养了学生的创新意识,并使不同层中的学生都能获得学习成功的体验。】

  2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

  问:出勤率等于什么?

  【设计意图:数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力。增强了学生学习活动的新鲜感,增大了课堂教学的信息容量,培养了学生收集处理信息的能力,有效地激发了学生的创新意识,让学生在丰富多彩的解决问题的活动中体验数学的价值。】

  (六)课堂小结:

  今天我们复习了什么内容?你有哪些收获?

  我们今后要用99%的努力+1%的灵感去创造100%的成功。

  【板书设计】

  百分数的整理与复习

  意义 互化 应用 找准单位“1”

  单位“1”是已知(用乘法计算)

  单位“1”是未知(用除法或方程计算)

六年级上册数学教学设计11

  教学内容:教材第19、20页相关内容及练习题

  教学目标:

  知识与技能:

  1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。

  2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在平面图上画出物体的具体位置。

  情感态度价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  过程与方法:通过小组合作交流探讨,掌握画图的方法。

  教学重难点:

  重点:能根据任意方向和距离确定物体的位置。

  难点:根据描述标出物体在平面图上的具体位置。

  教学方法:合作交流、共同探讨

  教、学具准备:

  教师:多媒体课件,直尺、量角器等。

  学生:直尺、量角器。

  教学过程:

  一、情景导入

  1.交流例题1中有关台风的消息。

  ⑴同学们听说过台风吗?你对台风有什么印象?

  ⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  师:听到这侧消息,你有什么感想?

  启发学生交流,引导学生关注台风的位置和动态。

  2.导入新课

  现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

  [板书课题:位置与方向(一)]

  【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

  二、探究新知

  ㈠教学题例1

  1.投影出示例题1。

  学生观察情境图,交流从图中信息?

  (启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

  2.交流确定台风中心具体位置的方法。

  ⑴让学生尝试说说台风中心的具体位置。

  ⑵教师结合学生的汇报情况进行引导。

  提问:东偏南30°是什么意思?

  (东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

  ⑶小结确定位置的方法。

  提问:如果只有一个条件,能够确定台风中心的具体位置吗?

  引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

  3.组织计算。

  师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢?

  学生独立计算,组织交流。

  600÷20=30(小时)

  (二)教学例题2

  1.投影出示例题2。

  提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

  2.尝试画图。

  ⑴学生独立思考怎样标出B市、C市的`具体位置。

  ⑵小组交流作图的方法。

  ⑶尝试画图。

  教师巡视交流,参与部分小组讨论,辅导有困难的学生。

  3.组织全班交流。

  投影展示学生完成的作品。

  组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

  B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

  C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

  4.算一算。

  台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

  200÷40=5(小时)

  5.总结画图的基本步骤。

  交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

  总结:

  (1)确定平面图中东、西、南、北的方向。

  (2)确定观测点。

  (3)根据所给的度数定出所画物体所在的方向。

  (4)根据比例尺,定出所画物体与观测点之间的图上距离。

  【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

  三、巩固练习

  1.教材第20页“做一做”。

  这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。

  ⑴让学生独立进行测量、计算、填空。

  ⑵组织交流。

  让学生说说是怎样测量方向的,怎样计算距离的。

  2.教材第21页“做一做”。

  ⑴学生独立进行画图。

  ⑵投影展示,组织评议。

  ⑶交流画图的方法。

  四、课堂小结

  今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

六年级上册数学教学设计12

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的.实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

六年级上册数学教学设计13

  学习目标:

  1.通过丰富多彩的学习情境,使学生感悟到“折扣”在日常生活中的广泛应用,明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题;

  2.使学生深刻体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确地应用所学知识解决实际问题,培养他们良好的数学素养;

  3.通过小组合作,培养学生的群体意识,促进他们创造性地解决问题的能力,培养他们的创新精神和学习数学的积极情感。

  学习重点:

  使学生能正确地按折扣和成数进行计算,并能领会所学知识与现实生活的联系以及其在日常生活中的实用性。

  学习难点:

  使学生能够在教学情境之中创造性地应用所学知识解决实际问题,培养他们良好的数学应用意识。

  教学设想:

  《折扣》是《分数(百分数)乘法应用题》的第二教时,是在学生学习了把折扣、成数改写成百分数,以及“求一个数的百分之几是多少”的应用题的基础上进行教学的。

  本节课的教学设计力图体现“尊重学生,体现创新”和“关注生活,注重实效”的教学理念。在新课程的理念下使用旧教材,一方面,教材本身固有的学习要求还是应当达到的,另一方面,要使学生真正成为学习的主体,使他们能够自始至终都兴趣盎然地参与学习活动,并能学有所思、学有所得,教师对原有教材又不能不进行一定的开拓与创新。为此,我着重做好以下三点:

  1.巧设情境,激发学习兴趣,凸现学生的主体地位。

  2.联系生活,加强应用,培养学生良好的数学素养。

  3.自主创新,改编教材,谋求师生的共同发展。

  教学过程预设:

  一.创设情境,激发兴趣。

  1.出示雅典奥运会吉祥物“雅典娜”和“费沃斯”,说说它们的名称,并猜测价格。(课件展示)

  二.导入新课,感悟新知。

  1.出示两家商店中这种吉祥物的不同价格,说说你会上哪一家店购买。

  甲商店:120元

  乙商店:110元

  2.出示两家商店不同的促销方式:

  甲商店:底价抢购,八折起

  乙商店:六一特价,一律九折

  3.说一说:“八折”和“九折”各表示什么意思?现在你觉得上哪一家店购买比较合算了?为什么?

  4.这种吉祥物在这两家店的价格究竟各是多少,我们该怎样计算?

  [指导学生列式计算:甲商店

  120×80%=96(元)乙商店

  110×90%=99(元)]

  5.小结:刚才这道题的的实质,就是求商品原价的百分之几是多少。

  6.试一试:

  (1)某家具商店将一种原价320元的床垫八五折出售,这种床垫的现

  价是多少元?

  (2)一种电视机原价每台2600元,“五一”期间以9.5折出售。这种电视机的促销价是多少元?

  三.简单应用,加深体验。

  情境展示:某儿童用品商店在儿童节期间对部分商品进行特价酬宾:

  大肚熊:原价120元,打八折;

  天文望远镜:原价528元,打七五折;

  笔袋:原价35元,打九折;

  电动汽车:原价156元,打六折;

  玩具机器人:原价220元,打四折;

  水杯:原价20元,打九五折;

  故事书:原价120元,打八折;

  篮球:原价78元,六五折。

  问:如果给你100元钱进这家商店购物,你将如何合理使用这100元钱?

  四:合作探究,解决问题。

  一种饮料,大瓶装每瓶1200毫升,10元一瓶;听装每听200毫升,2元一听。

  现有三家商店出售这种饮料,并推出了不同的促销方式:

  甲商店:买一大瓶,送一听;

  乙商店:一律九折;

  丙商店:满30元八折优惠。

  问:1.你喜欢上哪一家商店购买?说说你的想法。

  2.你们班共有多少同学?如果每位同学配备200毫升饮料,共需多少饮料?

  3.这么多饮料,上哪一家店购买可以使所花费的钱最省?请通过小组合作制订一个购买方案。

  (思考:购买方案的制订应视班级的具体情况而定。这道题具有比较开阔的思维空间,对学生而言是一种挑战。要尽可能使学生感悟以下两点:1,可以在两家或两家以上商店组合购买;2,用同样多的钱买到更多的饮料。这样这道题就具备了一定的创新意义)

  五.总结收获,课后延伸。

  1.说说学了这节课你有什么收获。(结合学生回答小结本课内容)

  2.出示课后延伸题:

  (1)河汉村有个种粮大户,前年收稻谷26000千克,去年比前年增产了一成五。这个种粮大户去年比前年要多收多少稻谷?

  (2)安华镇某大型袜厂2003年的产值达到了560万元,打算2004年在此基础上增值二成。该袜厂2004年比2003年增值多少万元?

  说说这两题涉及到了什么内容,回家后先独立完成,再请家长进行检查。

  板书设计:

  折扣应用题

  甲商店:120元

  乙商店:110元

  底价抢购,八折起

  中秋特价,一律九折

  (表示现价是原价的80%)

  (表示现价是原价的90%)

  120×80%=96(元)

  110×90%=99(元)

  教学反思

  这堂课是我曾经开设过的一堂校级公开课,课后学生与听课教师的反响相当好。我个人认为,这堂课在以下几方面是处理得比较成功的:

  一、重视学生在学习过程中的参与程度,关注他们的处境和感受。

  兴趣永远是最好的.老师,本节课中我针对小学生的年龄特征,以他们熟悉的“购物情境”导入学习,把简单、枯燥的学习理性知识的过程变成学生自主探究、发现问题并解决问题的动态过程,促使学生思维活跃地参与整个学习过程,也使课堂充满了生机和活力。

  二、注意到了数学知识与现实生活之间的联系,关注学生的生活经验。

  “实用性”是这节课的一个显着特点,无论是“折扣”还是“成数”,都是现实生活中的客观存在,也正因为此我们才有学习和探讨的必要。因此,我结合班级和上课时的实际情况组织教材,尽可能使学习内容贴近学生的生活,并通过课后延伸等方式,启发学生将所学内容在现实生活中进行充分的体验和感悟,为学生提供一个更为深广的学习空间。

  三、大胆改编教材,使课堂教学更具艺术性。

  在原教材中,这一课时的学习内容包括“折扣”和“成数”两部分,我在教学中则选择了小学生比较感兴趣的“折扣”作为主要的学习内容。至于“成数”相对而言离学生的日常生活有一定的距离,但却是学生家长所熟悉的,因此我把这一内容作为这堂课的课后延伸,让学生在回家以后通过自学以及与家长的交流和探讨自主掌握。从学生的反馈情况看,他们完全能够做到这一点。

  当然,这堂课也有不足之处,对一些同学而言,这节课的难度较大,尤其是“合作探究”部分。虽然有小组成员间的互助互学,还是有部分同学不能按时完成学习任务。用新课程的理念教学旧教材,对于那些习惯了传统教学的学生而言也是一种挑战,这是值得教师重新思考的。

六年级上册数学教学设计14

  设计说明

  本节课复习的是百分数知识在实际生活中的应用,常见的百分率是小学数学中的重要基础之一。

  本节课在教学设计上有如下特点:

  1.创设情境,在具体的情境中复习百分数的意义。

  在数学教学中,适时地给学生营造一个生活情境,不仅可以吸引学生的注意力,而且有利于学生发现问题,探索新知。复习中,通过创设情境,激发学生的学习兴趣,让学生结合具体情境,体会百分数与生活的密切联系,进一步理解百分数的意义,并在列表对比中,明确百分数与分数的区别和联系。

  2.巧用图示,有序地复习百分数、分数、小数的互化方法。

  思维导图在教学中备受关注,因为它可以帮助学生理清思考过程,把知识要点清晰地呈现在学生眼前。引导学生有序地复习百分数、分数、小数的互化方法时,结合学生的回答,把三者之间互化的方法用图示表示出来,使学生直观地了解并轻松掌握三者之间的互化方法以及相互间的可逆关系。

  3.重视迁移,培养学生类推的能力。

  根据百分数与分数的密切关系,百分数问题在解题思路和方法上与分数基本相同这一特点,联系分数知识复习、理解百分数问题中的数量关系,使学生能够正确解答百分数问题。这样设计,可以帮助学生沟通分数、百分数之间的内在联系。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙情境激趣

  (出示课件)一件绒衣的成分如下:

  羊绒:14.8%

  超细羊毛:73.5%

  天丝:11.7%

  读出这件绒衣成分的相关数据,并说出这些数据的意义。

  设计意图:通过具体情境,调动学生复习的积极性,激发学生的复习热情,为高效复习作铺垫。

  ⊙复习百分数的相关知识

  1.复习百分数的意义。

  (1)什么叫百分数?它的意义是什么?(板书:百分数)

  (像14.8%、73.5%、11.7%…这样的数叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比)

  (2)百分数和分数在意义上有什么不同?

  (结合学生的回答,用课件展示,列表对比)


百分数




分数




意义




百分数是表示一个数是另一个数的百分之几的数。




把单位“1”平均分成若干份,表示这样的1份或几份的数叫分数。




区别




百分数通常只是表示两个数的'倍比关系。




分数既可以表示两个数的倍比关系,又可以表示一个具体数量。




联系




百分数可以看作分母为100的特殊分数。





  2.复习百分数、分数、小数的互化方法。

  (1)百分数、分数、小数的互化方法是什么?

  ①小数与分数的互化方法。(结合学生的回答,课件展示)

  ②小数与百分数的互化方法。(结合学生的回答,课件展示)

  ③百分数与分数的互化方法。(结合学生的回答,课件展示)

  (2)巩固练习。

  ①把下面各数化成百分数。

  0.625= 0.2= 0.6= 3=

  ②把下面的分数化成百分数。

  = = =

  ③把下面的百分数化成小数或整数。

  42%= 108%= 5.4%= 200%=

  3.复习百分数应用题。

  (1)复习常见的百分率问题。

  (课件出示教材116页12题)

  取小麦500 g,烘干后,还有428 g。计算出这种小麦的烘干率和含水率。

  烘干率=×100%

  含水率=×100%

  (解决问题,然后复习其他常见的百分率)

  (2)复习百分数乘、除法应用题。

  [课件出示教材113页3题第(3)、(4)、(5)小题]

  ①一件衬衣原价125元,现在降价20%。现在售价是多少元?[125×(1-20%)=100(元)]

  ②一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?[100÷(1-20%)=125(元)]

  ③一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?

  长裤:100×150%=150(元)

  皮鞋:150÷=180(元)

  (3)小结。

  解百分数乘、除法应用题的关键是找准单位“1”,解题思路与分数乘、除法应用题的解题思路一样:单位“1”已知,求比较量用乘法计算;单位“1”未知,求单位“1”用除法计算。

  设计意图:在系统复习百分数的相关知识的基础上,重点复习应用百分数知识解决问题的思路和解题方法,使学生利用百分数乘、除法解决问题的能力得到进一步提高。

  ⊙巩固练习

  完成教材114页5题。

  ⊙课堂总结

  通过本节课的复习,你都进一步理解了哪些知识?

  ⊙布置作业

  教材116页13题。

  板书设计

  百分数(一)

  1.百分数的意义

  2.百分数、分数、小数的互化

  3.百分数应用题

六年级上册数学教学设计15

  【教学内容】:营养配餐(六年级上册p46)

  【教学目标】:

  ⑴使学生了解有关营养的知识,增强健康意识,均衡饮食。

  ⑵会利用已有的知识和技能,选择营养配餐和评价配餐营养成分的均衡性。

  【教学重点】:让学生体会解决实际问题的基本过程和方法,培养学生应用数学的意识和健康意识,提高解决问题的能力。

  【教学过程】:

  ⒈创设情境,引入新课:

  ⑴提出问题:

  教师:你们今天吃得什么饭菜呀?

  教师:那你们知道这些饭菜中主要有哪些营养吗?

  ⑵点题:

  教师:饭菜中的营养非常丰富,主要营养素有蛋白质、脂肪、碳水化合物、维生素及矿物质等。我们今天着重研究一下前三种。

  像你们这个年龄的儿童,一顿午饭大约需要蛋白质30克,脂肪23克,碳水化合物120克。

  ⒉探索新知:

  ⑴学生预习:

  给学生充足的时间熟悉新知,教师则引导学生主动地阅读情境中的图、表、文字与数字,即读图、读表、读字。从图、表、文字与数字的关系中看懂情境中直接给出的数学信息。

  ⑵指导学习

  教师:好了,你们表现的'时候到了,谁能告诉大家小明这顿午饭的营养符合营养师的建议吗?

  教师:那么就请大家按照营养师的建议,给小明也给你们自己设计一份既好吃又营养的午餐,好吗?

  ⒊巩固新知:

  让学生根据自己的兴趣,设计一份营养均衡的午餐,可以小组为单位,评选最优午餐,也可以小组合作共同设计。

  4.作业:

  设计一天的配餐表,并计算它的营养含量.

《六年级上册数学教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【六年级上册数学教学设计】相关文章:

数学六上册教学设计07-27

数学上册教学设计07-11

数学六年级上册的教学设计10-11

数学六年级上册的教学设计06-03

数学六年级上册的教学设计06-03

六年级上册数学教学设计10-26

六年级上册数学教学设计11-14

小学数学六年级上册教学设计09-01

小学数学六年级上册教学设计03-08

六年级上册数学教学设计

  作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写呢?下面是小编帮大家整理的六年级上册数学教学设计,仅供参考,希望能够帮助到大家。

六年级上册数学教学设计

六年级上册数学教学设计1

  教学目标

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  一、复习

  出示复习题。

  1、根据题意列出算式:

  5个12是多少?

  3个14是多少?

  2、下列句子中那些可以看做单位1

  猎豹的速度是狮子的七分之三。

  参加合唱队的同学占全班人数的五分之一。

  红花比黄花多二分之一。

  十月比九月节约四分之三。

  3、计算:3/10 +3/ 10 + 3/10 =

  3/10 + 3/10+ 3/10这题我们还可以怎么计算?

  今天我们就来学习分数乘法。

  二、新授

  1、利用3/10 + 3/10 + 3/10教学分数乘法。

  (1)这道加法算式中,加数各是多少?(都是3/10)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

  (3)3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,

  所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?

  谁能把它补充完整

  2、出示例1,

  (1)理解题意:

  引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,

  “人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

  跳一下的'2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?

  (列式:2/11×3 = 6/11)

  有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

  3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示3/8×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  6。练一练,课件出示,学生独立计算。然后订正。

  三、巩固练习

  比赛:

  第一回合

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  第二回合

  2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  四、课堂总结:

  今天你有什么收获?

  五、布置作业:

  练习二第1、2、4题。

六年级上册数学教学设计2

  单元目标:

  1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

  2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

  3、独立自学,使学生初步认识弧、圆心角和扇形。

  4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

  5、通过介绍圆周率的史料,使学生受到爱国主义教育。

  单元重点:

  1、认识圆和轴对称图形;

  2、掌握圆的周长和面积的计算公式。

  单元难点:

  理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

  第一课时:

  圆的认识

  教学目标:

  1、学生认识圆,掌握圆的特征,理解直径与半径的关系。

  2、会使使用工具画圆。

  3、培养学生观察、分析、综合、概括及动手操作能力。

  教学重点:

  圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

  教学难点:

  画圆的方法,认识圆的特征。

  教学过程:

  一、自学

  1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征? 长方形正方形平行四边形三角形梯形

  2、示圆片图形:圆是用什么线围成的?(曲线图形)

  3、举例:生活中有哪些圆形的物体?

  二、议学

  (一)认识圆的特征。

  1、学生自己在准备好的纸上画一个圆,并动手剪下。

  2、动手折一折。

  (1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)

  (2)再折出另外两条折痕,看看圆心是否相同。

  3、认识直径和半径。

  (1)将折痕用铅笔画出来,比一比是否相等?

  (2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

  (3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

  4、讨论:

  (1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

  (2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

  (3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。 在同一个圆里,有无数条半径,且所有的半径都相等。

  5、直径与半径的关系。

  学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

  得出结论:在同一个圆里,

  6、巩固练习:课本57“做一做”的第1-4题。

  (二)画圆

  1、介绍圆规的各部分名称及使用方法。

  2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

  三、悟学

  (一)巩固练习

  1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

  2、判断,并说为什么。

  (1)半径的长短决定圆的大小。()

  (2)圆心决定圆的位置。()

  (3)直径是半径的2倍。()

  (4)圆的半径都相等。()

  3、思考题:在操场如何画半径是5米的大圆?

  (二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?

  (三)作业:课本58页第5-8题。

  第二课时:

  圆的面积

  教学目标:

  1、学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。

  2、培养学生的观察、比较、概括和动手操作的能力。

  3、对学生进行爱国主义教育。

  教学重点:

  圆的周长和圆周率的意义,圆周长公式的推导过程。

  教学难点:

  圆周长公式的推导过程。

  教学过程:

  一、自学:认识圆的周长

  1、出示一个正方形。

  这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系?C=4a

  2、什么是圆的周长?

  让学生上前比划,圆的周长在那?那一部分是圆的周长? 得出定义:围成圆的曲线的'长叫做圆的周长。

  二、议学:

  1、圆周长的公式推导

  (1)你可以用什么办法知道一个圆的周长是多少?

  (2)学生各抒己见,分别讨论说出自己的方法:

  A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

  B、把圆放在直尺上滚动一周,直接量出圆的周长。

  C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?

  用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

  2、动手实践。

  (1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。

  (2)引生看表,问你们看周长与直径的比值有什么关系?

  (3)你有办法验证圆的周长总是直径的3倍多一点吗?

  (4)阅读课本P62,介绍圆周率,及介绍祖冲之。

  3、解决新问题。

  教学例1圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周? 第一个问题:已知d=20米求:C=? 根据C=πd20×3.14=62.8(m)

  第二个问题:已知:小自行车d=50cm先求小自行车C=?c=πd50cm=0.5m0.5×3.14=1.57(m) 再求绕花坛一周车轮大约转动多少周? 62.8÷1.57=40(周)

  答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

  三、巩固练习。

  1、求下列各题的周长。书本62页练习题

  2、判断正误。

  (1)圆的周长是直径的3.14倍。

  (2)在同圆或等圆中,圆的周长是半径的6.28倍。

  (3)C=2πr=πd

  (4)半圆的周长是圆周长的一半。

  四、作业。P64做一做,练习十五的第

  5、8题

  第三课时:

  圆的周长

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、自学:

  1、口答。4π 2π 5π 10π 8π

  2、求出下面各圆的周长。

  二、议学:

  1、提出研究的问题。

  (1)你知道Π表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?C=πdC=2πr

  (3)根据上两个公式,你能知道:

  直径=周长÷圆周率半径=周长÷(圆周率×2)

  2、练习题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数) 已知:c=3.77m求:d=?

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c÷(2Π)求:r=?

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。 ⑴3.14×8⑵3.14×8×2⑶3.14×8÷2+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20×2×3.14=125.6(厘米) 45分钟走了多少厘米?125.6×=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

六年级上册数学教学设计3

  1.简单而富有内涵的引入

  余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

  有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的.数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

  2.自发而科学严谨的探究

  关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

  3.数学思想和文化的渗透

  在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

  思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

六年级上册数学教学设计4

  教学目标

  1.依据小数、分数和百分数的意义,引导学生开展自主探索,理解和掌握将分数、小数化成百分数的方法。

  2.会解决求一个数是另一个数的百分之几的问题。在求命中率的基础上,理解更多生活中的百分率的实际含义,感受百分率在生活中应用的广泛性。

  3.进一步明确百分率与分数的联系和区别,培养学生比较分析、归纳概括的思维能力。

  重点:掌握小数、分数化成百分数的方法。

  难点:理解生活中百分率的实际含义。

  教学过程

  课件出示教材第84页主题图。

  师:王涛和李强是各自篮球队的主要得分手。在一场比赛后,他们之间有这样一段对话,从图中你能获得哪些信息?

  生:王涛是5投3中,李强是6投4中。

  师:根据这两条信息,老师想知道谁的'投篮更准,该怎么比较呢?

  学生计算,指名回答。

  生1:3÷5=0.6,4÷6≈0.67,因为0.6<0.67,所以李强的投篮更准。

  生2:3÷5=,4÷6=,因为<,所以李强的投篮更准。

  教师:这两种算法有什么相同的地方?(算式相同)都是求什么?(命中率,即投中的次数占投篮总次数的几分之几)有什么不同呢?(一个是用小数表示结果,一个是用分数表示结果。)

  1.揭示命中率。

  师:这种计算的方法,与篮球比赛技术统计中的投篮命中率类似。请从百分数的意义出发进行思考,什么叫“投篮命中率”?(投篮命中率表示投中次数占投篮总次数的百分之几。)

  师:该如何计算呢?(投篮命中率=。)

  师:这个题目的问题是“他们两人的命中率分别是多少?谁的命中率高?”。

  2.小数、分数化成百分数。

  师:投篮命中率是一个什么数?(百分数)你能把刚才的两种运算结果转化成百分数吗? (学生练习,指名回答。)

  生1:3÷5=0.6==60%。

  师:你是怎么做的?(把小数化成分母是100的分数,再化成百分数。)

  生2:3÷5====60%。

  师:4÷6除不尽,怎么办?(除不尽时,通常保留三位小数。)

  生:4÷6≈0.667==66.7%或4÷6=≈0.667=66.7%。

  师:你能解释这里的“≈”和“=”符号的用法吗?(4÷6除不尽,保留三位小数约等于0.667。然后把0.667这个小数转化为分母是1000的分数。)

  师:这样我们已经分别计算出了两个人的命中率,谁更高些?(李强。)

  3.引导归纳,得出方法。

  课件出示0.667=66.7%。

  师:你能理解这样的表示方法吗?(把小数点向右移动两位,再加上百分号。)

  师:把小数点向右移动两位意味着什么?(把这个数扩大了100倍。)

  师:加上百分号意味着什么?(把这个数缩小了100倍。)

  师:我们一起来归纳将小数、分数化成百分数的方法。

  引导式总结:把小数、分数化成百分数,可以化成分母是100的分数,(不能转化的保留三位小数)再化成百分数;

  也可以先将分数化成小数,(除不尽的保留三位小数)再将小数点向右移动两位,加上百分号。

  师:刚才我们计算的投篮命中率,表示投中次数是投篮总次数的百分之几。可以表示成投篮命中率=×100%的形式。为什么要“×100%”呢?

  预设:因为求的是百分率,要用百分数的形式表示。在后面添上“×100%”确保结果是百分数的形式。

  师:在实际生活中,像上面这样常用的百分率还有许多。如学生的出勤率、绿豆的发芽率、产品的合格率、小麦的出粉率、树木的成活率等。你能表示出求这些百分率的式子吗?(学生练习,指名回答。)

  小结:百分率表示一个数是另一个数的百分之几,它在我们生活中的应用非常广泛。

  1.生物小组进行玉米种子发芽试验,每次试验结果如下:

  试验次数 试验种子数 发芽种子数/粒 发芽率

  1 300 285 2 300 282 2 300 294 4 300 291

  师:从结果中我们可以直接看出哪一次实验的发芽率最高?哪一次最低?(让学生感受百分率的实际作用。)

  2.把下面的小数和分数改写成百分数。

  0.970.081.0051.9910.025 3.你能联系实际说一说哪些百分率不可能达到100%,哪些可能达到100%,哪些可能超过100%吗?

  通过这节课的学习,说说你有什么收获?还有什么疑问?

  教学反思

  根据学生已有的知识,放手让学生自主探究小数、分数化成百分数的方法。在整个教学活动中,利用教师的合理揭示、适时点拨、引导归纳,使学生的探究活动呈现出较强的层次性。这样的过程既符合学生的思维特征,又有利于知识的理解和掌握。通过分析各种百分率所表示的意义,不仅使学生体会到这一知识在生活中的广泛应用,也对求百分率的方法有了更为深刻的理解。

六年级上册数学教学设计5

  教学内容:

  新课标人教版六年级上册第99~100页。

  教学目标:

  1、知识技能目标:理解本金、利息和利率的含义,掌握利息的计算方法,会利用利息的计算公式进行一些有关利息的简单计算。

  2、情感性目标:在合作与交流的过程中获得良好的情感体验及口头表达能力,感受到生活中处处有数学。

  3、实践性目标:学生在调查实践中了解储蓄的意义、种类,培养学生搜集处理信息的能力。

  4、体验性目标:让学生在解决问题的过程中,进一步体验数学与生活的联系,增强数学意识,发展数学思维。

  (设计意图:关注学生发展,整合教学目标,新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。对于本课的设计,本着新课标的基本理念,“人人都能获得良好的数学教育”,让学生通过对不同存款方式的操作,体验到货币的升值,也感受到不同的存款方式所带来的不同收益,更重要的是让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。)

  教学重点:

  掌握利息的计算方法。

  教学难点:

  税后利息的计算。

  课前调查:

  银行储蓄凭证。

  教具准备:

  课前搜集的有关利息的信息、多媒体课件、银行存款单、计算器、有关利率表格。

  教学过程:

  (设计意图:遵循《数学课程标准》的要求,从学生的认识发展水平和已有的知识经验出发,逐步构建起关于外界的知识,从而使自身知识结构将得到发展。为此,本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照以“以学生为本”的思想,共分为四个教学层次,

  一、创设情境,生成问题

  二、探索交流,解决问题,

  三、巩固应用,内化提高

  四、回顾整理,反思提升。)

  课前自学

  1、预习课本P99~100

  2、课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。

  3、向家长或银行工作人员了解课本上的相关内容。如储蓄的种类,银行存款的年利率、如何填写存款凭条等。

  (设计意图:数学知识来源于生活,应用于生活。在学习新知前,先让学生预习课本。增强学生的感性认识,为帮助学生确实学好这部分知识打下基础。让学生分组进行有关储蓄知识的调查,组织学生进行有关的实践活动,培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力)

  一、创设情境生成问题

  1、开一个关于利率的发布会。

  师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。

  根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

  (设计意图:情境的创设,不仅充分调动了学生的学习积极性,而且为学生提供了从事数学活动的机会。学生通过课前的调查充分感知储蓄的益处,在不知不觉中学到了知识。以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系,起到了开动思维的作用,使学生乐于参与数学活动。)

  二、探索交流解决问题

  1、感知利息。

  师:近年来,我们沂南县始终坚持富民优先的发展思路,以发展民营经济作为经济发展的主体工程,收到了显著成效。很多人家里都有了暂时不用的钱,你知道他们是怎样处理这些钱的吗?

  生:存入银行......

  师:人们常常把暂时不用的.钱存入银行储蓄起来。那储蓄有什么好处呢?

  生:放在银行比较安全;可以得到利息。

  师:取款时,银行多支付的钱叫做利息。(板书:利息)

  小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。

  学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。

  (设计意图:根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力。)

  2、存款的方式。

  师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

  出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。

  我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?

  这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。

  这是老师的一张存款单(课件出示存款单,钱数:1000元、时间:一年、方式:定期),你能从这张存单上得到哪些信息,你是如何理解这些信息的?

  学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。

  学生观察讨论。

  我们先来交流一下你能理解的信息。

  生:我知道老师是在中国人民银行存的款。

  师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)

  生:我还知道老师存款的方式是定期存款。

  什么是定期存款的存款方式?那你知道存款的其他方式吗?

  生:整存整取,零存整取,定活两便、活期存款等

  生:我知道老师存的是一千元人民币。

  师:银行还办理外币储蓄。

  (设计意图:传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。联系实际增加学生的感性认识,教材中还给出一张银行用的存款凭条和利息的计算公式,让学生知道在实际生产生活中的简单应用及简单的计算。这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。)

  3、认识本金、利息、利率;明白利息的计算方法。

  通过课前的自学,你知道这一千元就叫……?对,我们把存入银行的钱叫做本金。

  生:我还看到利率是百分之二点二五。

  你知道什么叫利率吗?

  利息/本金=利率(老师板书)

  师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?

  关于利率,你们还知道什么?

  ………

  师:同学们了解的还真不少,你们能帮老师算算到期后老师可以得到多少利息?该如何计算呢?

  生:“利息/本金=利率”。我还知道:利息=本金×利率。

  师:既然大家已经知道了怎么样计算利息了,大家就来帮助老师计算一下,一年后我能得到多少利息?

  师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。

  学生可能出现下面三个算式:

  1)20xx×2.25%×22)20xx×2.70%×23)20xx×2.70%比较三个算式:

  1)2.25%是一年的年利率,2.70%是定期二年的年利率

  2)让学生说说自己的看法。

  生1:定期二年得到的利息等于本金乘二年期的利率。

  生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。

  师把公式填写完整:利息=本金×利率×时间(板书:×时间)

  小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。

  (设计意图:完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设了思维的空间,探究的空间,交流的空间,注重了让学生经历知识的产生过程,即培养了学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)

  4、学习利息税知识:

  师:大家都算出了我应得的利息,但实际上我并不能得到你们算出的利息,你们知道为什么吗?

  教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?

  生:要扣除利息所得税,要扣除20%的利息所得税。

  师:那老师到期后能得到多少税后利息呢?

  学生计算后小组交流,生列式计算,允许用计算器。

  然后归纳公式

  税后利息=本金×利率×时间×(1-20%)(板书)

  教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。

  小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。

  (设计意图:在引导学生探究学习的过程中,层层分析含义、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的关系,巧妙突破教学难点。让学生运用所学知识解决实际问题,在解决实际问题的同时,提高学生灵活运用知识的能力,同是针对利息税,进行公民要依法纳税的教育,提高学生的纳税意识。)

  (设计意图:学生各种能力的形成和发展是我们教学的首要任务。学生在自主探索和合作交流中,对知识的理解与把握非常深刻。为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。教学中还注重沟通师生的情感因素,面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。)

  三、巩固应用内化提高

  1、基本应用:

  (1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。

  在弄清以上这些相关概念之后,学生尝试解答例题。

  在学生独立审题解答的基础上订正。

  板书:

  方法一方法二

  1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)22.50×20%=4.50(元)1000+22.50×(1-20%)

  1000+22.50-4.50=1018(元)=1018(元)

  答:一年后王奶奶可以取回1018元。

  师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。

  (2)、学生完成第100页的“做一做”。下面是张叔叔到银行存款时填写的存款凭证。到期时张叔叔可以取回多少钱?

  四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)

  这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。

  (3)、102页第

  6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。

  2、综合应用

  (1)、王大爷在20xx年1月1日把10000元定期存款二年,可是在20xx年8月1日,急需用钱,你帮王大爷出出主意,该怎么办呢?

  让学生明白,如果定期存款中途取时,只能按活期算

  生:可以先向别人借钱,等存款到期后,再归还借款。

  生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。

  这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。

  (2)、课后实践、体验储蓄过程

  师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。

  (设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)

  四、回顾整理反思提升

  通过本课的学习,你有什么收获?

  (设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)

  板书设计

  利率

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  (设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)

六年级上册数学教学设计6

  教学目标:

  知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

  理解在同一个圆内直径与半径的关系。

  能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;

  转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。

  德育目标:让学生养成在交流、合作中获得新知的习惯。

  教学重点:探索出圆各部分的名称、特征及关系。

  教学难点:通过动手操作体会圆的特征。

  教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。

  教学过程:

  一、创设情境、激发兴趣:

  1、创设情境

  师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。

  师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?

  生:因为一号的赛车,轮子是圆的。

  师:其它的车手为什么会比一号的赛车慢呢?

  生:因为它们的轮子是方形,是三角形,有棱有角的。

  2、联系生活、举例说明

  师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。

  师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的.生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识

  二、自主探索,初步体验:

  1、第一次自主探索画一画。

  师:你能创造出一个任意大小的圆吗?

  生:能。

  师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?

  学生进行小组合作,分工创造圆。

  生:进行小组反馈。

  教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……

  师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?

  学生说一说各种画法的缺陷:(

  1、利用圆形轮廓描和印圆,方便但圆的大小固定。

  2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。

  3、旋转形成圆不能留下痕迹。

  4、圆规画圆,方便且一定大小的圆都能画)

  师:那你认为这么多方法中用什么画圆最科学最方便?

  生:用圆规画圆最方便。

  2、第二次尝试画一画-----用圆规画圆。

  师:那请同学们用圆规自已尝试画一个圆。

  没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

  生:(

  1、画移位的,

  2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

  学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)

  师:学生根据老师的讲解独立画圆。

  师:大家画的圆的位置都一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为刚针戳的位置不一样,(或点的位置不一样)

  师:看来这个点能决定圆的位置,(板书:能决定圆的位置)

  师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为我们圆规的开口大小不一样。

  生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

  师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。

  三、认识圆各部分名称及探究其特征:

  ①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)

  提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)

  师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)

  师:圆心一般用字母o来表示。(板书:o)

  教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。

  游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。

  ②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  通过测量引导学生发现:圆心到圆上任意一点的距离都相等。

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)

  提问:谁能说一说什么样的线段叫做半径?

  教师说明:半径一般用字母r来表示。(板书:r)

  教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?

  启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。

  ③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)

  学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)

  提问:谁能说一说,什么样的线段叫做直径?

  启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。

  教师说明:直径一般用字母“d”来表示。(板书:d)

  教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?

  引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。

  ④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?

  ⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)

  引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。

  师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。

  师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)

  ⑥练习:出示课件填表。

  ⑦巩固练习:出示判断题。

  四、转回课前问题:

  为什么车轮做成圆形的能得冠军呢?

  (让学生结合今天所学知识解决此题。)

  五、课后作业:

  用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。

  六、板书设计:

  圆的认识

  圆心O ——能决定圆的位置(定点)

  半径r

  ——能决定圆的大小(定长)

  直径d

  同圆半径

  无数条且长度相等

  (等圆)直径

  d=2r或r=d=

六年级上册数学教学设计7

  教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的.比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

六年级上册数学教学设计8

  教学目的

  1、通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点:

  圆面积计算

  教学难点:

  公式以及推导。

  教学过程

  一、复习并引入课题。

  1、口算:2π 9。42÷π 12。56÷π

  2、已知圆的半径是2。5分米,它的周长是多少?

  3、一个长方形的长是6。2米,宽是4米,它的面积是多少?

  4、说出平行四边形的面积公式是怎样推导出来的?

  5、出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1、圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的.大小,叫做圆的面积。)

  2、圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr2

  3、圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

  回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1、根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。

六年级上册数学教学设计9

  教学目标

  使学生在具体情境中初步理解东偏北(南)、西偏南(北)等方向的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性和合理性。进一步培养学生观察能力、识图能力和有条理地进行表达的能力,发展空间观念。

  教学重难点

  重点:通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法;在情境中学生能根据方向和距离确定物体的位置,并描述简单的路线图。

  难点:通过解决实际问题,使学生能根据方向和距离确定物体的位置,并能描述简单的路线图。

  教学过程

  一、设置情景,导入新课

  同学们,你们看过《龟兔赛跑》的故事吗?生说看过。谁知道比赛的结果是谁赢了?一起说乌龟。为什么是乌龟赢了?生说:因为兔子睡了一觉。兔子知道自己错了。今天又要跟乌龟再比赛赛跑:

  请看《龟兔赛跑续集》

  观看龟兔赛跑图片,导入课题。

  小兔为什么又会输?生笑着说这是因为小兔跑错方向了。怎样才能走到终点呢?由哪几个要素决定?今天我们就来研究有关于:终点在起点什么方向上?终点和起点相距多远?

  带着这两个问题,

  我们来学习今天的新课:位置

  同学们,我们已经学习了哪些方位?生:东,南,西,北四个方位。还有呢?生:东南,西南,东北,西北。我们已经学习了8个方位。课件出示。

  二、自主探究,合作交流

  每年我国的沿海地区都会受到台风的侵扰。瞧,这是某年的一个强台风位置图,请测算一下。

  (一)教学例1

  1、现在台风中心的位置。(课件出示)

  目前台风中心位于A市东偏南30°方向、距A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  台风大约多少个小时后到达A市?

  2、东偏南30°是什么意思?如果只有这个条件,能否确定台风中心的具体位置吗?

  3、如果这样预告会发生什么情况?这样确定方向准确吗?怎样预告会更加的准确?

  4、还要预告什么?(距离)

  (距离600千米)如果没有距离又会怎样?

  5、小结:预告台风时既要说方向又要说距离。强调:东偏南30°还可以怎样表示?也可以说成南偏东60°,但在生活中一般我们先说与物体所在方向离得较近(夹角较小)的方位。 6。口答:台风大约多少个小时后到达A市?

  7、练习:完成教科书第20页的做一做。

  先让学生独立完成,让学生操作中经历知识的形成过程,然后集体订正。

  (二)教学例2

  1、课件出示:台风到达A市后,改变方向向B市移动。受台风影响,C市也将有大到暴雨。 B市位于A市北偏西30°方向、距离A市200km。C市在A市正北方,距离A市300km 。请你在例1的图标中标出B市、C市的位置。

  2、怎样表示距离呢?

  先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出200km?从而帮助学生确定比例尺,和图上距离。用1cm表示100km比较合适。

  3、学生独立完成,集体订正。

  4、订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

  通过刚才的学习,你觉得怎样确定物体的位置?

  教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

  根据方向和距离可以确定物体所在的位置。

  5、口答:台风到达A市后,移动速度变为40km/时,几小时后到达B市?

  6、练习:完成教科书第21页的做一做,打开课本第21页的做一做:

  (1)有关信息:

  教学楼在校门的正北方向150米处。

  图书馆在校门的北偏东35度方向150米处。体育馆在校门西偏北40度方向200米处。

  (2)师:要在平面图上准确地标出一个地方的位置,你认为需要考虑哪几个方面?

  (3)师生共同梳理:A、先确定好平面图的中心。 B、确定方向和距离。

  (4)自主操作,独立绘制平面图。

  (5)指名展示交流,完善绘图过程。

  学生展示绘制的图,并演示过程,其他学生评议补充。

  看来画图的过程有点复杂,让我们一起再来回顾一下整个过程。画图的`过程和方法清楚了吗?刚才你们是不是这样画的?

  三、知识反馈,巩固应用

  看来同学们对本届的知识掌握的还不错。现在你们有勇气来挑战自我吗?

  课件出示:

  1、警察局收到卧底送来的示意图

  (1)犯罪分子1在警察局的()方向,距离是()米。

  (2)犯罪分子2在警察局的()向,距离是()米。

  (3)犯罪分子3在警察局的()方向,距离是()米。

  2、做一做,课件出示,独立完成后订正。

  四、课堂小结

  这节课你的最大收获是什么?你还有什么不懂的地方?

  位置与方向,生活常遇到,

  要想定位置,两点要记牢:

  方向是首要,距离少不了。

  五、拓展延伸

  同学们的收获可真不少,你们能用今天所学的知识创作一幅学校建筑平面图吗?自己开始试一试吧!

六年级上册数学教学设计10

  【学材简析】

  人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

  【设计理念】

  百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

  【教学策略】

  本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

  【教学目标】

  知识与技能:

  1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

  2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

  3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

  4、使学生形成积极的学习情感,养成良好的学习习惯。

  过程与方法:

  经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

  情感、态度、价值观:

  体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

  【教学重点难点】

  重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

  2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

  难点:税后利息的计算。

  【教学准备】

  多媒体课件。

  【教学过程】

  (一)复习百分数的意义。

  教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。 (板书:百分数的整理与复习)

  1、复习百分数的意义。

  (表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)

  2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)

  3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

  小数化成百分数:先把小数点向右移动两位,同时添上百分号。

  百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

  分数化成百分数:先把分数化成小数,再化成百分数。

  百分数化成分数:先把百分数写成分母是100的分数,再化简。

  【设计意图:通过整理使学生对百分数的意义进行回顾,使学生把各类知识联系起来,系统性的建构知识。百分数和小数、分数的互化,让学生自己探索,再通过“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。为后面学习百分数的计算和应用打下了基础。】

  (二)根据信息,请同学们提出相关的百分数问题。

  (小组讨论、交流)

  老师今年36岁,丁俊同学今年12岁。

  问题:1、老师的岁数是丁俊同学的百分之几?

  2、丁俊同学的岁数是老师的百分之几?

  3、老师的岁数比丁俊同学的大百分之几?

  4、丁俊同学的岁数比老师的少百分之几?

  【设计意图:让学生自己根据给出的信息提出数学问题,并独立解答,不仅使学生进一步理解了求一个数是另一个数的百分之几问题的结构,掌握了解决问题的方法,而且沟通了知识之间的联系,有利于学生建构自己的知识框架,形成完善的知识体系。】

  (三)复习稍复杂的百分数应用。

  我校男生人数比女生少10%。

  问:1、男生人数是女生人数的百分之几?

  (指名回答)

  2、已知女生人数有500人,求男生有多少人?

  (单位“1”是已知的)

  3、已知男生人数有450人,求女生有多少人?

  (单位“1”是未知的)

  【设计意图:通过各种变式练习,运用对应思想,数行结合思想,转化思想等,让学生在“联”中求“变”,掌握解决问题的各种思路与方法,达到熟练解决问题的能力。】

  (四)复习百分数在生活中的应用:折扣、纳税、利息。

  1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

  问:什么等于折扣?

  2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

  问:应纳税额等于什么?

  3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

  问:什么是利息?如何计算利息?在计算利息时要注意什么?

  4、计算:王叔叔20xx年买了2000元国债,定期三年。三年国债的利率为5.4%。由于买国债可以免交5%的'利息税,王叔叔可以免交利息税多少元?到期时,王叔叔可以取回多少钱?

  【设计意图:让学生敏锐的数学眼光和灵活的数学思维在提出问题和解决问题中得到训练和发展,同时学生在解决问题的过程中对“求一个数的百分之几是多少”问题结构更加明晰,思路更具条理性,也再次突现了数学的实用价值。】

  (五)综合练习:

  1、方方说:“书价是30元,书店给打了九折。”毛毛说:“我付的钱数是方方所付钱数的50%。”园园说:“我付的钱数是方方所付钱数的13 ”丁丁说:“我付的钱数是方方所付钱数的1.5倍。”请问他们各付了多少钱呢?

  【设计意图:创设开放性情境,为学生提供信息,并让学生选择相关信息来解决实际的问题,给学生提供了广阔的思维空间,通过对比,渗透了问题解决策略多样化的思想,培养了学生的创新意识,并使不同层中的学生都能获得学习成功的体验。】

  2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

  问:出勤率等于什么?

  【设计意图:数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力。增强了学生学习活动的新鲜感,增大了课堂教学的信息容量,培养了学生收集处理信息的能力,有效地激发了学生的创新意识,让学生在丰富多彩的解决问题的活动中体验数学的价值。】

  (六)课堂小结:

  今天我们复习了什么内容?你有哪些收获?

  我们今后要用99%的努力+1%的灵感去创造100%的成功。

  【板书设计】

  百分数的整理与复习

  意义 互化 应用 找准单位“1”

  单位“1”是已知(用乘法计算)

  单位“1”是未知(用除法或方程计算)

六年级上册数学教学设计11

  教学内容:教材第19、20页相关内容及练习题

  教学目标:

  知识与技能:

  1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。

  2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在平面图上画出物体的具体位置。

  情感态度价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  过程与方法:通过小组合作交流探讨,掌握画图的方法。

  教学重难点:

  重点:能根据任意方向和距离确定物体的位置。

  难点:根据描述标出物体在平面图上的具体位置。

  教学方法:合作交流、共同探讨

  教、学具准备:

  教师:多媒体课件,直尺、量角器等。

  学生:直尺、量角器。

  教学过程:

  一、情景导入

  1.交流例题1中有关台风的消息。

  ⑴同学们听说过台风吗?你对台风有什么印象?

  ⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  师:听到这侧消息,你有什么感想?

  启发学生交流,引导学生关注台风的位置和动态。

  2.导入新课

  现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

  [板书课题:位置与方向(一)]

  【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

  二、探究新知

  ㈠教学题例1

  1.投影出示例题1。

  学生观察情境图,交流从图中信息?

  (启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

  2.交流确定台风中心具体位置的方法。

  ⑴让学生尝试说说台风中心的具体位置。

  ⑵教师结合学生的汇报情况进行引导。

  提问:东偏南30°是什么意思?

  (东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

  ⑶小结确定位置的方法。

  提问:如果只有一个条件,能够确定台风中心的具体位置吗?

  引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

  3.组织计算。

  师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢?

  学生独立计算,组织交流。

  600÷20=30(小时)

  (二)教学例题2

  1.投影出示例题2。

  提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

  2.尝试画图。

  ⑴学生独立思考怎样标出B市、C市的`具体位置。

  ⑵小组交流作图的方法。

  ⑶尝试画图。

  教师巡视交流,参与部分小组讨论,辅导有困难的学生。

  3.组织全班交流。

  投影展示学生完成的作品。

  组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

  B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

  C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

  4.算一算。

  台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

  200÷40=5(小时)

  5.总结画图的基本步骤。

  交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

  总结:

  (1)确定平面图中东、西、南、北的方向。

  (2)确定观测点。

  (3)根据所给的度数定出所画物体所在的方向。

  (4)根据比例尺,定出所画物体与观测点之间的图上距离。

  【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

  三、巩固练习

  1.教材第20页“做一做”。

  这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。

  ⑴让学生独立进行测量、计算、填空。

  ⑵组织交流。

  让学生说说是怎样测量方向的,怎样计算距离的。

  2.教材第21页“做一做”。

  ⑴学生独立进行画图。

  ⑵投影展示,组织评议。

  ⑶交流画图的方法。

  四、课堂小结

  今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

六年级上册数学教学设计12

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的.实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

六年级上册数学教学设计13

  学习目标:

  1.通过丰富多彩的学习情境,使学生感悟到“折扣”在日常生活中的广泛应用,明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题;

  2.使学生深刻体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确地应用所学知识解决实际问题,培养他们良好的数学素养;

  3.通过小组合作,培养学生的群体意识,促进他们创造性地解决问题的能力,培养他们的创新精神和学习数学的积极情感。

  学习重点:

  使学生能正确地按折扣和成数进行计算,并能领会所学知识与现实生活的联系以及其在日常生活中的实用性。

  学习难点:

  使学生能够在教学情境之中创造性地应用所学知识解决实际问题,培养他们良好的数学应用意识。

  教学设想:

  《折扣》是《分数(百分数)乘法应用题》的第二教时,是在学生学习了把折扣、成数改写成百分数,以及“求一个数的百分之几是多少”的应用题的基础上进行教学的。

  本节课的教学设计力图体现“尊重学生,体现创新”和“关注生活,注重实效”的教学理念。在新课程的理念下使用旧教材,一方面,教材本身固有的学习要求还是应当达到的,另一方面,要使学生真正成为学习的主体,使他们能够自始至终都兴趣盎然地参与学习活动,并能学有所思、学有所得,教师对原有教材又不能不进行一定的开拓与创新。为此,我着重做好以下三点:

  1.巧设情境,激发学习兴趣,凸现学生的主体地位。

  2.联系生活,加强应用,培养学生良好的数学素养。

  3.自主创新,改编教材,谋求师生的共同发展。

  教学过程预设:

  一.创设情境,激发兴趣。

  1.出示雅典奥运会吉祥物“雅典娜”和“费沃斯”,说说它们的名称,并猜测价格。(课件展示)

  二.导入新课,感悟新知。

  1.出示两家商店中这种吉祥物的不同价格,说说你会上哪一家店购买。

  甲商店:120元

  乙商店:110元

  2.出示两家商店不同的促销方式:

  甲商店:底价抢购,八折起

  乙商店:六一特价,一律九折

  3.说一说:“八折”和“九折”各表示什么意思?现在你觉得上哪一家店购买比较合算了?为什么?

  4.这种吉祥物在这两家店的价格究竟各是多少,我们该怎样计算?

  [指导学生列式计算:甲商店

  120×80%=96(元)乙商店

  110×90%=99(元)]

  5.小结:刚才这道题的的实质,就是求商品原价的百分之几是多少。

  6.试一试:

  (1)某家具商店将一种原价320元的床垫八五折出售,这种床垫的现

  价是多少元?

  (2)一种电视机原价每台2600元,“五一”期间以9.5折出售。这种电视机的促销价是多少元?

  三.简单应用,加深体验。

  情境展示:某儿童用品商店在儿童节期间对部分商品进行特价酬宾:

  大肚熊:原价120元,打八折;

  天文望远镜:原价528元,打七五折;

  笔袋:原价35元,打九折;

  电动汽车:原价156元,打六折;

  玩具机器人:原价220元,打四折;

  水杯:原价20元,打九五折;

  故事书:原价120元,打八折;

  篮球:原价78元,六五折。

  问:如果给你100元钱进这家商店购物,你将如何合理使用这100元钱?

  四:合作探究,解决问题。

  一种饮料,大瓶装每瓶1200毫升,10元一瓶;听装每听200毫升,2元一听。

  现有三家商店出售这种饮料,并推出了不同的促销方式:

  甲商店:买一大瓶,送一听;

  乙商店:一律九折;

  丙商店:满30元八折优惠。

  问:1.你喜欢上哪一家商店购买?说说你的想法。

  2.你们班共有多少同学?如果每位同学配备200毫升饮料,共需多少饮料?

  3.这么多饮料,上哪一家店购买可以使所花费的钱最省?请通过小组合作制订一个购买方案。

  (思考:购买方案的制订应视班级的具体情况而定。这道题具有比较开阔的思维空间,对学生而言是一种挑战。要尽可能使学生感悟以下两点:1,可以在两家或两家以上商店组合购买;2,用同样多的钱买到更多的饮料。这样这道题就具备了一定的创新意义)

  五.总结收获,课后延伸。

  1.说说学了这节课你有什么收获。(结合学生回答小结本课内容)

  2.出示课后延伸题:

  (1)河汉村有个种粮大户,前年收稻谷26000千克,去年比前年增产了一成五。这个种粮大户去年比前年要多收多少稻谷?

  (2)安华镇某大型袜厂2003年的产值达到了560万元,打算2004年在此基础上增值二成。该袜厂2004年比2003年增值多少万元?

  说说这两题涉及到了什么内容,回家后先独立完成,再请家长进行检查。

  板书设计:

  折扣应用题

  甲商店:120元

  乙商店:110元

  底价抢购,八折起

  中秋特价,一律九折

  (表示现价是原价的80%)

  (表示现价是原价的90%)

  120×80%=96(元)

  110×90%=99(元)

  教学反思

  这堂课是我曾经开设过的一堂校级公开课,课后学生与听课教师的反响相当好。我个人认为,这堂课在以下几方面是处理得比较成功的:

  一、重视学生在学习过程中的参与程度,关注他们的处境和感受。

  兴趣永远是最好的.老师,本节课中我针对小学生的年龄特征,以他们熟悉的“购物情境”导入学习,把简单、枯燥的学习理性知识的过程变成学生自主探究、发现问题并解决问题的动态过程,促使学生思维活跃地参与整个学习过程,也使课堂充满了生机和活力。

  二、注意到了数学知识与现实生活之间的联系,关注学生的生活经验。

  “实用性”是这节课的一个显着特点,无论是“折扣”还是“成数”,都是现实生活中的客观存在,也正因为此我们才有学习和探讨的必要。因此,我结合班级和上课时的实际情况组织教材,尽可能使学习内容贴近学生的生活,并通过课后延伸等方式,启发学生将所学内容在现实生活中进行充分的体验和感悟,为学生提供一个更为深广的学习空间。

  三、大胆改编教材,使课堂教学更具艺术性。

  在原教材中,这一课时的学习内容包括“折扣”和“成数”两部分,我在教学中则选择了小学生比较感兴趣的“折扣”作为主要的学习内容。至于“成数”相对而言离学生的日常生活有一定的距离,但却是学生家长所熟悉的,因此我把这一内容作为这堂课的课后延伸,让学生在回家以后通过自学以及与家长的交流和探讨自主掌握。从学生的反馈情况看,他们完全能够做到这一点。

  当然,这堂课也有不足之处,对一些同学而言,这节课的难度较大,尤其是“合作探究”部分。虽然有小组成员间的互助互学,还是有部分同学不能按时完成学习任务。用新课程的理念教学旧教材,对于那些习惯了传统教学的学生而言也是一种挑战,这是值得教师重新思考的。

六年级上册数学教学设计14

  设计说明

  本节课复习的是百分数知识在实际生活中的应用,常见的百分率是小学数学中的重要基础之一。

  本节课在教学设计上有如下特点:

  1.创设情境,在具体的情境中复习百分数的意义。

  在数学教学中,适时地给学生营造一个生活情境,不仅可以吸引学生的注意力,而且有利于学生发现问题,探索新知。复习中,通过创设情境,激发学生的学习兴趣,让学生结合具体情境,体会百分数与生活的密切联系,进一步理解百分数的意义,并在列表对比中,明确百分数与分数的区别和联系。

  2.巧用图示,有序地复习百分数、分数、小数的互化方法。

  思维导图在教学中备受关注,因为它可以帮助学生理清思考过程,把知识要点清晰地呈现在学生眼前。引导学生有序地复习百分数、分数、小数的互化方法时,结合学生的回答,把三者之间互化的方法用图示表示出来,使学生直观地了解并轻松掌握三者之间的互化方法以及相互间的可逆关系。

  3.重视迁移,培养学生类推的能力。

  根据百分数与分数的密切关系,百分数问题在解题思路和方法上与分数基本相同这一特点,联系分数知识复习、理解百分数问题中的数量关系,使学生能够正确解答百分数问题。这样设计,可以帮助学生沟通分数、百分数之间的内在联系。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙情境激趣

  (出示课件)一件绒衣的成分如下:

  羊绒:14.8%

  超细羊毛:73.5%

  天丝:11.7%

  读出这件绒衣成分的相关数据,并说出这些数据的意义。

  设计意图:通过具体情境,调动学生复习的积极性,激发学生的复习热情,为高效复习作铺垫。

  ⊙复习百分数的相关知识

  1.复习百分数的意义。

  (1)什么叫百分数?它的意义是什么?(板书:百分数)

  (像14.8%、73.5%、11.7%…这样的数叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比)

  (2)百分数和分数在意义上有什么不同?

  (结合学生的回答,用课件展示,列表对比)


百分数




分数




意义




百分数是表示一个数是另一个数的百分之几的数。




把单位“1”平均分成若干份,表示这样的1份或几份的数叫分数。




区别




百分数通常只是表示两个数的'倍比关系。




分数既可以表示两个数的倍比关系,又可以表示一个具体数量。




联系




百分数可以看作分母为100的特殊分数。





  2.复习百分数、分数、小数的互化方法。

  (1)百分数、分数、小数的互化方法是什么?

  ①小数与分数的互化方法。(结合学生的回答,课件展示)

  ②小数与百分数的互化方法。(结合学生的回答,课件展示)

  ③百分数与分数的互化方法。(结合学生的回答,课件展示)

  (2)巩固练习。

  ①把下面各数化成百分数。

  0.625= 0.2= 0.6= 3=

  ②把下面的分数化成百分数。

  = = =

  ③把下面的百分数化成小数或整数。

  42%= 108%= 5.4%= 200%=

  3.复习百分数应用题。

  (1)复习常见的百分率问题。

  (课件出示教材116页12题)

  取小麦500 g,烘干后,还有428 g。计算出这种小麦的烘干率和含水率。

  烘干率=×100%

  含水率=×100%

  (解决问题,然后复习其他常见的百分率)

  (2)复习百分数乘、除法应用题。

  [课件出示教材113页3题第(3)、(4)、(5)小题]

  ①一件衬衣原价125元,现在降价20%。现在售价是多少元?[125×(1-20%)=100(元)]

  ②一件衬衣降价20%后,售价为100元。这件衬衣原价是多少元?[100÷(1-20%)=125(元)]

  ③一件衬衣售价为100元,一条长裤的价钱是这件衬衣的150%,这条长裤的价钱又是一双皮鞋的。这双皮鞋售价是多少元?

  长裤:100×150%=150(元)

  皮鞋:150÷=180(元)

  (3)小结。

  解百分数乘、除法应用题的关键是找准单位“1”,解题思路与分数乘、除法应用题的解题思路一样:单位“1”已知,求比较量用乘法计算;单位“1”未知,求单位“1”用除法计算。

  设计意图:在系统复习百分数的相关知识的基础上,重点复习应用百分数知识解决问题的思路和解题方法,使学生利用百分数乘、除法解决问题的能力得到进一步提高。

  ⊙巩固练习

  完成教材114页5题。

  ⊙课堂总结

  通过本节课的复习,你都进一步理解了哪些知识?

  ⊙布置作业

  教材116页13题。

  板书设计

  百分数(一)

  1.百分数的意义

  2.百分数、分数、小数的互化

  3.百分数应用题

六年级上册数学教学设计15

  【教学内容】:营养配餐(六年级上册p46)

  【教学目标】:

  ⑴使学生了解有关营养的知识,增强健康意识,均衡饮食。

  ⑵会利用已有的知识和技能,选择营养配餐和评价配餐营养成分的均衡性。

  【教学重点】:让学生体会解决实际问题的基本过程和方法,培养学生应用数学的意识和健康意识,提高解决问题的能力。

  【教学过程】:

  ⒈创设情境,引入新课:

  ⑴提出问题:

  教师:你们今天吃得什么饭菜呀?

  教师:那你们知道这些饭菜中主要有哪些营养吗?

  ⑵点题:

  教师:饭菜中的营养非常丰富,主要营养素有蛋白质、脂肪、碳水化合物、维生素及矿物质等。我们今天着重研究一下前三种。

  像你们这个年龄的儿童,一顿午饭大约需要蛋白质30克,脂肪23克,碳水化合物120克。

  ⒉探索新知:

  ⑴学生预习:

  给学生充足的时间熟悉新知,教师则引导学生主动地阅读情境中的图、表、文字与数字,即读图、读表、读字。从图、表、文字与数字的关系中看懂情境中直接给出的数学信息。

  ⑵指导学习

  教师:好了,你们表现的'时候到了,谁能告诉大家小明这顿午饭的营养符合营养师的建议吗?

  教师:那么就请大家按照营养师的建议,给小明也给你们自己设计一份既好吃又营养的午餐,好吗?

  ⒊巩固新知:

  让学生根据自己的兴趣,设计一份营养均衡的午餐,可以小组为单位,评选最优午餐,也可以小组合作共同设计。

  4.作业:

  设计一天的配餐表,并计算它的营养含量.