数学教学设计

时间:2023-06-14 17:07:32 教学设计 我要投稿

【荐】数学教学设计

  作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那要怎么写好教学设计呢?下面是小编精心整理的数学教学设计,欢迎大家分享。

【荐】数学教学设计

数学教学设计1

  教学目标

  1、知识与技能:

  使学生知道小数的运算顺序和整数运算顺序相同。

  使学生掌握小数连乘、乘加、乘减的计算方法,正确地进行小数连乘、乘加、乘减的计算,并能解答有关应用题。

  理解三角形的稳定性,并能用其解释生活中的实际例子。

  2、过程与方法:

  让学生通过旧知迁移新知识的方法来学习小数连乘、乘加、乘减的计算。

  3、情感态度与价值观:

  培养学生认真审题的好习惯。

  教学重难点

  1、教学重点

  小数的连乘、乘加、乘减的运算顺序。

  2、教学难点

  正确地计算小数的连乘、乘加、乘减习题。

  教学工具

  多媒体,口算卡片、小黑板

  教学过程

  教学过程设计

  1、复习准备,揭示课题

  [1]复习准备:

  1、口算。(出示口算卡片)

  1.02×0.2 0.45×0.6 0.8×0.125 0.759×0

  0.25×0.4 0.067×0.1 0.1×0.08 0.85×0.4

  2、说一说下面各题的运算顺序,再计算。

  12×5×60 30×7+85 250×4—200

  ⑴让学生说说每道题的运算顺序;

  ⑵ 小结:

  ①整数连乘的运算顺序是:从左到右依次运算;

  ②整数的乘加、乘减混合运算的顺序是:先算乘法,再算加法或减法。

  ⑶让学生算出结果并集体订正。

  [2]导入新课:

  师:同学们已学会了整数连乘、乘加、乘减题的计算方法,其实,小数的运算顺序跟整数的一样,这节课我们就来学习小数的连乘、乘加、乘减。

  板书第4节连乘、乘加、乘减

  2探究新知,解决问题

  [3]自主探索

  师:在本节课的开始,老师给大家带来一个问题,希望同学们帮忙解决。

  情景图出示

  (1)指名学生读题。

  (2)师:题目的已知条件和问题分别是什么?怎样列式计算?

  指名学生回答

  (3)学生尝试练习。

  学生板演:0.9×0.9×100

  =0.81×100

  =81(平方米)

  [4]交流汇报

  师:对于这个问题,大家有什么不明白的地方吗?

  生:这个算式是先算什么,再算什么?(先算0.9×0.9,再乘100.)

  生:0.9×0.9是什么意思?(求的是一块砖的面积)

  生:为什么要用0.9×0.9呢?不可以用0.9×100吗?(因为占地的是瓷砖的面积,而不是瓷砖的.边长。)

  生:再乘100呢?求的是什么?(100块砖能够铺地的面积。)

  师:同桌之间互相说一说每一步求的是什么?

  3、扩展提高

  师:在整数乘法中我们已学过哪些运算定律?请用字母表示出来。

  根据学生的回答,板书。

  板书

  乘法交换律:ab=ba

  乘法结合律:a(bc)=(ab)c

  乘法分配律:a(b+c)=ab+ac

  师:出示3组算式:下面每组算式左右两边的结果相等吗?

  0.7×1.2 1.2×0.7

  (0.8×0.5)×0.4 0.8×(0.5×0.4)

  (2.4+3.6)×0.5 2.4×0.5+3.6×0.5

  师:每组左右两边的算式有什么关系?你发现了什么?自己计算一下,验证一下你的结论对不对?

  引导学生比较两组算式的结果,得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  板书整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  (1)自主探究

  师:出示例题:0.25×4.78×4.

  师:引导学生进行思维迁移:你能仿照整数乘法中,类似的题目的简算方法来计算这道题吗?你能说出每一步各应用了哪一条运算定律吗?

  (2)巩固练习

  50×0.13×0.2、1.25×0.7×0.8、0.3×2.5×0.4

  学生独立完成,巡视辅导有困难的学生。指名板演,集体订正。

  (3)难点释疑

  师:出示题目0.65×201.

  师:你认为此题的关键是什么?(把201变成200+1,用乘法分配律完成)你会做吗?谁来讲讲这道题的解题思路?

  0.65×201

  =0.65×(200+1)

  =0.65×200+0.65(乘法分配律)

  =130+0.65

  =130.65

  (4)趣味练习

  狐狸卖香蕉:

  卖水果的狐狸波利称水果时总缺斤短两,熊猫菲菲打算惩治他一下。这一天菲菲来狐狸波利这儿买香蕉。“香蕉一元钱一斤,您买多少啊?”波利很热情。“我买一百斤,不过得麻烦您把它们全部剥好,我给您每斤香蕉皮5角钱,每斤香蕉肉5角钱,行吗?”狐狸波利想:5角钱加上5角钱,还是每斤一元钱。便爽快地答应了。熊猫菲菲把钱付了,可是狐狸波利盯着自己的钱,总感觉有问题,却又不知问题出在哪里?同学们,你们能帮波利找出问题出在哪里了吗?

  提示:假设熊猫菲菲买的香蕉皮有a斤,香蕉肉有b斤,a+b=100(斤),那么应付的钱数为:

  0.5×a+0.5×b

  =0.5×(a+b)

  =0.5×100

  =50(元)

  所以熊猫菲菲少付了50元,让狐狸吃了亏。

  六层灯塔:一个六层塔,每一层点灯的盏数都是它的上一层的3倍,已知最顶层点了2盏灯,求这座塔共点了多少盏灯?

  [5]小结

  师:你认为在做连乘习题时应注意什么?

  教师引导学生小结:

  小数四则混合运算的顺序与整数四则混合运算的顺序是一样的,今后我们在进行小数四则运算的时候一定要先搞清楚运算顺序再计算。整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  4、巩固应用,内化提高

  1、课堂练习

  “做一做”

  ⑴指名学生说一说每题的运算顺序。

  ⑵独立计算出结果。

  ⑶师辅导有困难的学生,集体订正。

  ⑷做乘加题注意什么?

  提示:要先计算乘法再计算加法。

  参考答案:72×0.81+10.4 7.06×2.4—5.7

  =58.32+10.4 =16.944—5.725.8

  =68.72 =11.244

  [2]巩固练习

  ⑴出示:50.4×1.95—1.8 3.76×0.25+25.8

  =50.4×0.1 =0.094+25.8

  =5.04 =25.894

  ⑵怎样判断它对不对?

  ①先看它的运算顺序是否正确;

  ②再看它的计算结果是否正确。

  ⑶根据这两点进行判断并把不正确的改正过来。

  ⑷集体订正。

  参考答案:50.4×1.95—1.8

  =50.4×0.1

  =5.04

  运算的顺序错误了,应该先算乘法,再算减法。正确的算式应为:

  50.4×1.95—1.8

  =98.28—1.8

  =96.48

  第二题3.76×0.25+25.8的乘法部分计算错误了,应为:

  3.76×0.25+25.8

  =0. 94+25.8

  =26.74

  2、综合练习:

  看谁算得快。(分组比赛)

  19.4×6.1×2.3 3.25×4.76—7.8 18.1×0.92+3.93

  参考答案:

  19.4×6.1×2.3 3.25×4.76—7.8 18.1×0.92+3.93

  =118.34×2.3 =15.47—7.8 =16.652+3.93

  =272.182 =7.67 =20.852

  3、用简便方法计算7.用简便方法计算。

  (1)6.4×1.25×12.5

  =8×0.8×1.25×12.5

  =(8×1.25)×(0.8×12.5)

  =10×10

  =100

  (2)15.12—6.82—8.18

  =15.12—(6.82+8.18)

  =15.12—15

  =0.12

  (3)0.76×0.43+0.24×0.43

  =(0.76+0.24)×0.43

  =1×0.43

  =0.43

  (4)5.86×0.4×0.5×0.5:

  =5.86×0.4×(0.5×0.5)

  =5.86×0.4×0.25

  =5.86×(0.4×0.25)

  =5.86×0.1

  =0.586

  课后小结

  师:谈一谈通过这节课的学习你收获了什么?你觉得这节课表现得怎么样?你对自己的表现满意吗?

  本课主要知识点:

  1、小数四则混合运算的顺序与整数四则混合运算的顺序是一样的

  2、先算乘除,再算加减,有括号的先算括号里面的。

  3、整数乘法的运算定律也可以应用到小数乘法中。

  4、整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

  师:这节课我们学习了小数的连乘、乘加和乘减的计算,知道了小数的混合运算顺序和整数的运算顺序是一样的,在计算中我们可以把整数的乘法运算规律运用到小数乘法中,使我们的运算更加简便。

  板书

  第一章小数乘法

  第1节连乘、乘加、乘减

  1、小数四则混合运算的顺序与整数四则混合运算的顺序是一样的

  2、先算乘除,再算加减,有括号的先算括号里面的。

  3、整数乘法的运算定律也可以应用到小数乘法中。

  4、整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

数学教学设计2

  教学目的

  1.使学生在具体的情境中感知口算在实际中的作用,培养学生的数学应用意识。

  2.通过观察、比较,发现并掌握一个因数是整百数的乘法口算,并能够正确地进行计算。

  教学过程

  一、创设情境,引发情感

  二、探究新知

  把整百数看成几个百,和另一个因数相乘,得多少个百,在得数后面添上两个0。

  三、尝试练习

  整百数的乘法口算和整十数的乘法口算有什么异同点?

  四、分层练习

  练习十一的第1-3题。

  五、作业:

  练习十一的第4、5题。

  课题二用两位数乘的乘法估算

  教学目的

  1.让学生体会估算在日常生活中的意义和作用。

  2.掌握两、三位数乘两闰数的乘法估算。

  3.能利用估算解决实际问题。

  教学过程

  一、复习引入

  谁能说说上节课我们学

  习了哪些知识?

  口算:28×8

  89×9

  312×7

  498×6

  22×9

  说一说口算的简便方法。

  二、探究新知

  把本题的估算和前面的一位数乘法的估算作比较,它们有什么异同点?

  三、尝试练习:完成第46页做一做。

  四、分层练习

  1.估算下面各题

  79×5602×4

  87×9

  188×2

  2.写出下面估算结果。

  12×4232×5184×6293×53

  五、作业:练习十二第1-3题。

  课题三除法口算

  教学目的

  1.使学生理解并掌握除数是整百数的除法口算,能正确地进行计算。

  2.培养学生的口算意识和习惯。

  教学过程

  一、复习引入

  1.口算下面各题,看谁算得快。

  200÷50

  280÷70

  3600÷90

  450÷50

  2.仔细观察下面两个算式与上面的`题相比较有什么不同?

  500÷100

  2400÷100

  二、探究新知

  1.探究500÷100怎样口算?

  2.教学例5。

  3.归纳:怎样口算除数是整百数的除法?哪种方法最方便?

  三、分层练习

  1.仔细观察下面左边的算式可以看成右边的哪个算式?用线连起来。

  800÷100

  6÷2

  600÷200

  15÷3

  2800÷70030÷6

  1500÷3008÷1

  3000÷60028÷7

  2.做练习十三的第1、2题。

  四、作业:练习十三的第3-5题。

数学教学设计3

  一、导入新课。

  1.谈话:今天老师请大家带来了一些生活中常见的容器,谁来说说你所带容器的容量是多少?

  (指名交流)

  2.谈话:像这些计量比较少的液体,常用毫升做单位,毫升可以用符号“ml”表示。(板书)

  二、学习新课。

  1.谈话:饮料瓶的容量是500毫升,钙奶瓶的容量是100毫升。那么1毫升是多少呢?

  (让学生来简单描述,或上来倒出认为是1毫升的.水。)

  2.认识1毫升。

  出示:25毫升量筒。

  谈话:这是一个25毫升的量筒,里面盛的水是1毫升。

  (出示实物,让学生观察,感受1毫升有多少。)

  我们再用这个滴管来滴1毫升的水,数数有这样的几滴。

  3.教师演示实验,学生观察、数数。

  4.谈话:你觉得1毫升的水怎么样?

  (让学生体会1毫升是很小的计量单位)

  5.谈话:通过前面的学习我们已经知道升和毫升都是容量的计量单位,那么它们之间有什么关系呢?

  (学生可进行猜测,可能有学生已经知道其中进率。)

  6.出示:图片

  谈话:你能看着刻度说出每个容器里有多少毫升水吗?(指名交流)

  7.出示1升水,与500毫升的水比较,估计1升水有多少毫升?

  (1)学生估计交流。

  (2)实验证明。

  板书:1升=1000毫升。

  8.练习,“想想做做”第4题。

  4升=()毫升20xx毫升=()升

  9升=()毫升5000毫升=()升

  (1)学生独立完成。

  (2)指名交流,并说说自己是怎么想的。

  全班校对,及时纠正错误。

  三、巩固应用,完成“想想做做”。

  1.第1题。

  (1)学生审题后估计各容器里有多少毫升。

  (2)出示数值,全班读一读。

  2.第3题。

  (1)学生审题,指名说出每种饮料的容量。

  (2)学生独立思考。

  (3)指名交流,并说说自己是怎么想的。

  4.阅读“你知道吗?”

  四、课堂小结。

  1.谈话:今天我们学习了什么内容?你有什么收获?

  2.布置作业:补充习题第9页。

  3.课外作业:到超市看看,哪些物品是用升作单位的,各是多少升?哪些是用毫升作单位的,各是多少毫升?

  4.有时间介绍一下节课量器的做法,并允许学生在家里试做。

数学教学设计4

  一、教学设计:

  1 学习方式:

  对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2 学习任务分析:

  充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的'表达推理过程,为以后的证明打下基础。

  3 学生的认知起点分析:

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  4 教学目标:

  (1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

  (2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

  (3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  5 教学的重点与难点:

  重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  6 教学过程

  教学步骤

  教师活动

  学生活动

  教学媒体(资源)和教学方式

  复习过渡

  引入新知

  创设情景

  提出问题

  建立模型

  探索发现

  归纳总结

  得出新知巩固运用

  及其推广

  反思小结

  提炼规律

  电脑显示,带领学生复习全等三角定义及其性质。

  电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边

  分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?

  对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

数学教学设计5

  一、设计思想

  新课程将致力于使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和应用数学的信心。学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其他学科学习中的困难。本课要让学生经历一些简单的实际问题抽象为数学问题的过程,通过本课的学习,初步学会选择有用信息进行简单的、有条理的思考,在与同伴的合作中解决问题。

  二、教材分析:

  "用数学"在前面已经结合教学内容进行了多方面的教学,知识没有用标题的形式明确给出。在这里出现"用数学"的标题,目的.是让学生知道数学知识是为了解决问题,进一步培养学生应用数学的意识和自觉性。第七题是用"停车场"的画面展开的,描述了停车场上已经停放了9辆汽车,同时还有6辆车正在开进停车场,要解决的是"现有几辆车"的问题。这类问题,学生首次接触,学习起来有一定的难度。因此,本课的复习重点是培养学生合理使用各种信息解决问题的意识。复习难点是文字信息的处理,依靠关联词语理清解题思路。

  三、学情分析

  学生已经能够根据情境图给出的资源解决一些简单的问题,但对于捕捉文字信息尚有困难。因此在原有知识的基础上,教师须指导学生展开想象的翅膀,挖掘出形象图外的信息资源,学会解答用比较抽象的文字表示条件和问题的题目。

  四、教学目标

  1、培养学生用所学的数学知识解决简单的实际问题。

  2、进一步发挥学生的想象力。

  3、创设情境,在游戏中感知数学,在数学中体会成功的喜悦。

  五、教学重难点

  培养学生合理利用各种信息解决问题的意识。

  六、教学策略与手段

  复习"用数学"第117页第7题时教师出示没有文字的情境图,让学生自己观察,并说出发现了什么。也可以让学生分小组讨论,引导学生提出问题。接着出示图中两为小朋友的对话,理解"又开来了6辆"这话的含义,告诉学生,图上开来的汽车没有画出来,应该根据图上小朋友告诉我们的条件来解决问题。

  七、课前准备

  课件:停车场情境图,堆雪人图和妈妈儿子对话图。

  八、教学过程

  (一)复习导入

  1、指名口算

  10-7 5-4 6-2 7-3 8-0 18-10

  17-7 18-5 2+13 4+10 6+9 27-20

  8+5 0+0 15+4 5-5 5+7 20+9

  2、填未知数

  (1)6+( )=11 14-( )=10

  讨论:,括号里该填几?怎么想?指名回答。

  (2)练习

  9+( )=13 8+( )=15 12-( )=2

  5-( )=4 7-( )=1 ( )+7=14

  学生做完后,问是怎样想的。

  (二)创设情景

  1、出示书上第117页的第7题。

  (1) 学生观察,分组讨论,说说发现了什么?

  (2) 引导学生思考:根据这幅图,你能提出什么问题?

  (3) 问:为什么开来的汽车有一辆没有画完整?看着这幅图,你能准确地说出又开来几辆汽车吗?

  (4) 引导学生看书中的小朋友是怎么说的?

  (5) 问:现在有几辆车?你会列式吗?学生说教师板书:9+6=15(辆)

  (6) 问:如果把"又开来了6辆"这句话去掉,让你们说又开来了几辆,你们会解答吗?四人小组说一说,然后派代表说。

  (三)巩固练习新题

  出示"堆雪人图",书上第121页第11题。

  问:你们喜欢堆雪人吗?

  分组说一说这幅图的意思?(要求口头编出一道应用题。)

  你知道一共有几个小朋友在堆雪人吗?

  列出算式,一人板演,其余在书上完成,并说一说为什么?

  2、出示"对话图",书上第121页第12题。

  (1) 分组讨论,说一说图中讲的是一件什么事情?

  (2) 引导学生看图,结合文字理解内容。

  (3) 根据问题列式计算,并说说你是怎样算的?

  (4) 举例说一说日常生活中的有关数学知识方面的问题?

  (四)教师总结

  1、小朋友,今天我们学习了"用数学",大家能够根据图上的意思解答问题了。现在老师出一道题目,你还会做吗?(出示下题)

  2、从你们身边的事物中找一找,根据"9+7"的算式,提出两个条件和一个问题。想一想,怎么编?可以与同伴交流,也可以与老师、爸爸妈妈讨论,看谁编得好。

  九、板书设计

  十、作业设计

数学教学设计6

  教学目标

  1.进一步理解采用法定计量单位的重要意义.

  2.复习长度、面积、体积、质量、时间单位.

  3.复习各种计量单位间的进率.

  教学重点

  指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

  教学难点

  掌握各种计量单位的实际大小及进率,正确使用计量单位.

  教学步骤

  一、直接导入.

  提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)

  教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习“量的计量”.(教师板书课题)

  二、归纳整理.

  (一)启发学生回忆:我们学过了哪些量的计量?

  教师板书:

  长度质量时间

  面积

  体积(容积)

  (二)复习长度、面积、体积单位及进率.

  1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

  2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间的进率是多少?

  学生讨论:相邻面积单位之间的进率为什么都是100?

  师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的'进率就是100.

  3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

  学生思考:相邻体积单位之间的进率为什么是1000?

  教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

  4.练习.

  (1)在()里填上适当的计量单位名称.

  一枝铅笔长176()一个篮球场占地420()

  一张课桌宽52()一个火柴盒的体积是21()

  一间教师的面积是48()一种保温瓶的容量是2()

  (2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

  (3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

  (三)复习质量单位.

  1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?

  2.练习.

  ①10麻袋大米约1()

  ②l个鸡蛋约6.5()

  ③1棵白菜约2.5()

  ④1名六年级学生体重是40()

  (四)复习时间单位.

  1.启发学生回忆:学过的时间单位有哪些?它们之间的进率是多少?

  2.教师强调:

  ①时间单位间的进率不像前两种计量单位间的进率那么有规律,要记牢、用准.

  ②“小时”的单位名称按规定应记作“时”.

  3.思考.

  ①怎样判断某一年是闰年还是平年?

  ②21世纪从什么时间开始?

  4.练习.

  (1)一年有()个月,分成()个季度.

  (2)一个月分成()旬、()旬和()旬.一月的下旬是()天,平年二月的下旬是()天.

  (3)采用24时计时法,下午1时就是()时,夜里12时就是()时,也就是第二天的()时.

  (五)名数的改写.

  1.出示5米.(引导学生,说出各部分名称)

  2.单名数、复名数的复习,并举例.

  3.填写例1.

  (1)3时20分=()分

  (2)=()吨()千克

  (3)3080克=()千克()克

  (4)5分40秒=()分

  4.练习.

  3千克50克=()克3千克50克=()千克

  3050米=()千米()米3050米=()千米

  2.4时=()时()分2.4时=()分

  2时40分=()时2元4分=()分

  三、全课小结.

  本节课整理和复习了哪些知识?在理解和运用这些知识时应注意什么?

  四、课堂练习.

  1.填空.

  (1)1米=()厘米

  (2)1公顷=()平方米

  (3)1平方米=()平方分米=()平方厘米

  (4)1升=()毫升

  (5)1吨=()千克

  (6)平年的第一季度天数是()天.

  2.判断.

  (1)20xx年是21世纪的第一年.()

  (2)1992年是闰年.()

  (3)数学课本长18分米,宽13分米.()

  (4)钟表上时针转动的速度是分针的.()

  五、布置作业.

  1.测量两件家具,记录各边的长度,算出表面积和体积.

  2.称出两件炊具的质量并记录下来.

  3.调查父母的出生年、月、日,算一算平年还是闰年?

  4.记录自己从家到学校所用的时间.

  六、板书设计

数学教学设计7

  教学目标:

  1.使学生经历从实际生活中发现问题、提出问题、解决问题的过程,学习用两步计算的方法解决问题。

  2.通过学生合作、交流,寻找解决问题的不同方法。

  3.使学生感受数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  4.培养学生从多角度观察问题的能力。

  5.体会数学在实际生活中的运用。

  教学重点:

  初步形成综合运用数学知识解决问题的能力。

  教学难点:

  从不同角度分析信息、寻找方法、解决问题,逐步提高解决问题的能力。

  教具准备:

  多媒体课件。

  教学过程:

  一、创设情境,引入新课。

  同学们,今天老师给大家欣赏几张图片,大家想一想这是什么活动中的呢?(运动会开幕式)

  (设计意图:通过学生所熟悉的情境引入更能激发学生的学习兴趣。)

  二、自主探索,合作交流。

  师:看,同学们在干什么?在运动会开幕式上表演团体操,整齐吗?(出示P99页情景图)

  师:你发现了什么问题?

  生:3个方阵一共多少人?

  老师有点看不懂这幅图,哪里才叫一个方阵?(请同学在屏幕上指一指)那另外两个方阵在哪里?(屏幕不够大,照片没有照出来)。

  那这道题除了“有3个方阵”这个条件外,你还能找出其他的条件吗?

  生:(每行10人,每个方阵有8行。)

  师:那么我们想一想如何根据这些条件来解决这个问题?大家讨论讨论。学生独立完成,全班交流,生汇报。板演。

  (设计意图:本环节主要是通过具体的情境呈现给学生信息,培养了学生在具体生动的.情境中搜集信息,处理信息的能力。不仅调动了学生研究的积极性,而且让学生意识到生活中存在着大量的数学问题,从而初步培养了学生用数学的意识。)

  方法一:先求出每个方阵的人数,再求出3个方阵的人数。

  10×8=80(人)表示什么意思?

  80×3=240(人)又表示什么意思?

  列出综合算式10×8×3=240(人)。

  方法二:先求出3个方阵一行的人数,再求出3个方阵8行的人数。(把3个方阵横着并在一起,先求出一大行的人数,再求出8大行的人数。)

  10×3=30(人)表示什么意思?30×8=240(人)又表示什么意思?列出综合算式10×3×8=240(人)

  方法三:先求出3个方阵一列的人数,再求出3个方阵10列的人数。

  (把3个方阵竖着并在一起,先求出一大列的人数,再求出10大列的人数。)

  8×3=24(人)表示什么意思?

  24×10=240(人)又表示什么意思?

  列出综合算式8×3×10=240(人)。

  小结:观察这三种方法有什么相同和不同?

  相同点:最后结果相同,都连续用了两次乘法,是两步计算应用题

  不同点:方法不一样。

  师:真了不起!,同一个问题,能从不同的角度去思考,采用不同的方法来解决。但是,无论思路如何,都是用连乘的方法解决问题。这也就是我们这节课所学的用连乘的方法解决问题。

  板书课题:解决问题——连乘

  (设计意图:多种算法的展示,不仅培养了学生思维的灵活性,激发了学生的学习热情,而且使孩子们体验到成功的乐趣。)

  三、练习应用,巩固提高.

  在我们的实际生活中有许多用连乘的方法来解决的实际问题,下面我们一起来看几个。

  做一做:一共有多少个鸡蛋呢?

  练习1:它坚持锻炼身体,每天跑两圈。跑道每圈400米,他一个星期(7天)跑多少米?

  练习2:我们算一算这个场所可同时接待多少位客人?

  练习3:他已经游了多少米?

  拓展4:钢笔问题(方法最优化,解决问题)

  为了杜绝浪费粮食现象,学校准备举行节约资源教育活动,并准备购买钢笔奖励给节约之星,共有40个班级,每个班级有3名节约之星。大队委员来到文具批发市场后,得到如下信息:

  第一家商店:每支8元。

  第二家商店:每支9元,如果购买100支或100支以上,每支6元。

  让你选择,你会选择到哪家去买?

  四、回顾总结。

  短短的四十分钟过去了,这节课你们开心吗?那我们回顾一下,这节课我们学会了什么?

  教师总结:

  在我们的生活中处处都有数学问题,希望每位同学都能注意观察,发现、提出身边的数学问题,并能用所学的数学知识去解决这些问题,最后祝每个同学都越来越聪明、能干。

数学教学设计8

  第一章第三节 三角函数的诱导公式(一)

  一、指导思想与理论依据

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二.教材分析

  三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

  三.学情分析

  本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

  四.教学目标

  (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

  (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

  (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

  (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

  五.教学重点和难点

  1.教学重点

  理解并掌握诱导公式.

  2.教学难点

  正确运用诱导公式,求三角函数值,化简三角函数式.

  六.教法学法以及预期效果分析

  “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

  1.教法

  数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

  在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

  2.学法

  “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

  在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

  3.预期效果

  本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

  七.教学流程设计

  (一)创设情景

  1.复习锐角300,450,600的三角函数值;

  2.复习任意角的三角函数定义;

  3.问题:由 ,你能否知道sin2100的值吗?引如新课.

  设计意图

  自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

  (二)新知探究

  1. 让学生发现300角的终边与2100角的终边之间有什么关系;

  2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

  3.Sin2100与sin300之间有什么关系.

  设计意图

  由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

  (三)问题一般化

  探究一

  1.探究发现任意角 的终边与 的终边关于原点对称;

  2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

  3.探究发现任意角 与 的三角函数值的关系.

  设计意图

  首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

  (四)练习

  利用诱导公式(二),口答下列三角函数值.

  (1). ;(2). ;(3). .

  喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

  (五)问题变形

  由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究

  1.探究任意角 与 的三角函数又有什么关系;

  2.探究任意角 与 的三角函数之间又有什么关系.

  设计意图

  遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步. 展示学生自主探究的结果

  诱导公式(三)、(四)

  给出本节课的课题

  三角函数诱导公式

  设计意图

  标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

  (六)概括升华

  的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

  设计意图

  简便记忆公式.

  (七)练习强化

  求下列三角函数的值:(1)sin(-1000 ); (2). cos(-204000).

  设计意图

  本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的.良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

  学生练习

  化简: .

  设计意图

  重点加强对三角函数的诱导公式的综合应用.

  (八)小结

  1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

  2.体会数形结合、对称、化归的思想.

  3.“学会”学习的习惯.

  (九)作业

  1.课本P-27,第1,2,3小题;

  2.附加课外题 略.

  设计意图

  加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

  (十)板书设计:(略)

  八.课后反思

  对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

  然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

数学教学设计9

  教学设计示例

  运用公式法――完全平方公式(1)

  教学目标

  1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2.理解完全平方式的意义和特点,培养学生的判断能力.

  3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

  4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。

  教学重点和难点

  重点:运用完全平方式分解因式.

  难点:灵活运用完全平方公式公解因式.

  教学过程设计

  一、复习

  1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

  2.把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4.

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n).

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式.

  请写出完全平方公式.

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

  a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的.二倍,符号可正可负,像这样的式子就是完全平方式.

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1.

  答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) .

  (2)不是完全平方式.因为第三部分必须是2xy.

  (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) .

  (4)不是完全平方式.因为缺第三部分.

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y.

  例1 把25x4+10x2+1分解因式.

  分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

  例2 把1- m+ 分解因式.

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

  解法1 1- m+ =1-2·1· +( )2=(1- )2.

  解法2 先提出 ,则

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2.

  三、课堂练习(投影)

  1.填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2.

  2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

  项式改变为完全平方式.

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4.

  3.把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2.

  答案:

  1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.

  2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

  (2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2.

  (4)是完全平方式,9m2+12m+4=(3m+2) 2.

  (5)是完全平方式,1-a+a2/4=(1-a2)2.

  3.(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2.

  四、小结

  运用完全平方公式把一个多项式分解因式的主要思路与方法是:

  1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

  2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.

  五、作业

  把下列各式分解因式:

  1.(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4.

  2.(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.

  3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4.(1) x -4x; (2)a5+a4+ a3.

  答案:

  1.(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2.

  2.(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2.

  3.(1)(mn-1) 2; (2)7am-1(a-1) 2.

  4.(1) x(x+4)(x-4); (2)14a3 (2a+1) 2.

  课堂教学设计说明

  1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

  2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

数学教学设计10

  我们的数学课堂学什么?计算、算理、概念……,是的这些基础数学知识对一个人的数学素质是非常重要的,但它是不是惟一决定性因素呢?是不是影响我们学生以后一生的学习、生活、工作呢?联合国教科文组织数学教育论文专辑中中曾叙述这样的一个典型的例子:我们能确定三角形面积公式一定重要吗?很多人在校外生活中使用这一公式至多不超过一次。

  21世纪国际数学教育的根本目标是“问题解决”,要解决我们学生过去、现在、将来所遇到的种种问题,他们所需的不仅仅是知识,而是比知识更重要的数学思想。

  一、什么是数学核心思想

  数学核心思想,是指在对数学本质的认识中起核心作用的基本数学思想和数学观念。基本数学思想有:符号与数的表示思想、集合思想、对应思想、合理化思想和结构思想等。数学观念主要有推理意识、化归意识、抽象意识和整体意识等。在数学问题解决中,当情境稍有变化时,主体常会感到束手无策,如果有数学核心思想来调控数学方法,则往往可以超越这个特定的情境。摘自《学与教的心理》高等教育出版社。

  二、什么是教学设计

  教学设计是运用现代学习、教学、传播等方面的理论与技术,针对特定的教学对象和教学目标,来分析教学问题、寻找解决方法、评价教学效果以及修改执行方案的`系统过程。它是为了达到一定的教学目标,对教什么(课程内容)和怎样教(教学组织、模式选择、媒体选用等)所进行的设计。

  三、数学核心思想在教学设计中的体现

  数学思想不是孤立存在的,如果说基础知识是躯体的话,那数学思想就是躯体的灵魂。数学活动过程是渗透数学思想的载体,而教学设计则应以数学核心思想的渗透为重要依据。教师在教学设计时,要根据教学内容认真分析本课的数学核心思想,围绕数学核心思想确立教学目标、教学重难点以及突破重难点的方法。

  (一)数学核心思想为教学设计的路标

  美国学者马杰认为,教学设计由三个基本问题组成:首先是“我要去哪?”即制定教学目标;做为一个教育者要把学生带到哪里去,是至关重要的。数学核心思想的确立,教育者会在教学设计中,把这一思想蕴含到教学教学活动之中去,有了灵魂的教学活动会激发学生思维的火花。

  例如二年级下册《生活中的大数》数学核心思想:十进制,位值制

  历史上,无论美国、加拿大,还是在世界上别的国家,数都被认为是数学课程的基石。这学前至十年级的数学都扎根在这块基石上。代数中的解方程原理和数系中的结构特征一致,几何和度量特性是用数字描述的。(摘自美国数学教育的原则和标准)全国数学教师理事会著人民教育出版社。)

  根据这一数学核心思想设计这样一组教学活动:

  1、通过数据模型建立“千”和“万”的概念。

  出示了一个由一千个小正方体组成的大正方体,让学生先猜一猜,后分层数一数一共有多少个小正方体?接着数10个一千个小正方体,认识10个一千是一万,再通过对比一万和一千、一千和一体会1万和1千。通过课件回忆数的过程,发现十进制,从而告诉学生十进制是中国人发明的,现在全世界都在使用,激发学生的爱国情感。

  2、通过“测量长度”数一些数量较大实物的活动让学生进一步体会“十进制”从而培养学生的数感。

  在练习中让学生数大约一万个豆子,这时孩子肯定不一个一个数,也不会十个十个的数,(学生认为这样比较麻烦)。这时出示二百个豆子,并把它放在一个透明的杯子里,学生受到启发用,量出二百个豆子的高度,然后画出4个同样的高度,迅速的数出大约一千个豆子,同时可以想到用同样的方法能数出一万个豆子。

  3、通过用10个一百厘米展示一千厘米有多长,培养学生的空间观念。

  学生通过用10个一百厘米展示一千厘米有多长,利用十进制建立长度之间的关系,之后让学生想一想一万厘米有多长?一万米有多长?为后面学习千米打下了良好的基础,同时培养了学生的空间感。

数学教学设计11

  一、 本课题研究背景和目的

  阅读作为一种学习方式,它是人们获取知识的基本途径之一。阅读具有快捷传播知识、加深理解、提供范例、培养认知能力等功效。在数学教学中。不少老师和学生都认为学习数学就是老师多讲解,学生要多做题,课本被当成了教师的讲解材料和学生的练习册,对课本中的内容的阅读重视不够。学生也没有阅读数学课本的习惯,学习中若有问题,也往往直接问老师,很少通过钻研课本来寻找思路。

  本课题研究的第一个目的是让学生正确认识数学阅读的作用,有效地发挥数学阅读的教学功能,培养和提高学生的自学能力,增强学生独立获取知识的能力。

  本课题研究的另一目的是想通过课题研究,让老师体会到阅读数学课本内容的重要性,从而更有效地利用教材;同时,在阅读中培养学生自主学习的意识和能力,突出学生的主体地位。

  二、 国内研究的现状分析

  从网上查找到的资料可以看出,目前,有一部分中学比较注重开展对中学生数学阅读能力的研究,小学虽然也有教师对此问题比较关注,能看到一些老师写的理论文章,但在我所听到的各种级别的'数学公开课上,还很少看到有教师能够把这个问题在课堂教学中有效体现出来。实际上,与其他学习方式相比,数学阅读具有“有助于规范学生语言,加深其对数学思想方法的理解,养成其独立思考的习惯,培养其自学能力”等特点,应该说,是数学教与学的重要环节,也是数学教学改革应该认真研究的一个问题。同时我也认为,提高学生的阅读能力,符合现代“终身教育,终身学习”的教育思想。但是,由于在小学阶段,老师总感觉学生年龄小,理解能力弱,自主学习能力差,不敢放手让学生通过阅读来获得新知,该阅读的时候不是被教师代替就是电脑课件代替,学生读的机会少,甚至一节课,学生没有机会读书,课堂上往往是学生听的多,而读的少。这种教学现状,不利于培养学生自主学习能力,不能形成终身学习的意识和能力。目前小学生使用的教材,是许多专家依据新的课程标准,结合小学生知识结构和年龄特征来组织编写的,编写过程中,一定是考虑了学生的接受能力,小学生应该是可以看懂的。所以,利用现行教材开展阅读教学,完成是可能的。

  三、 本课题研究的主要内容

  阅读内容的选择研究:如教材中出现的数学概念、公式的推导过程、数学知识、单元小结、算法指导等。

  阅读措施的选择研究:如课内读和课外读。课内读主要有:对概念的阅读。对公式的阅读和对数学习题的阅读。课外读还包括上网查阅相关资料,读课外书等。

  相关研究:教学设计形式的研究、课堂教学组织形式的研究、阅读效果评价方式的研究和阅读教学与其他教学形式想结合的研究。

  课题的可行性分析

  1、学校从20xx年开始启动校本教研活动,经过两年的实验和摸索,我们已经积累了一些开展话题研究的实践经验。

  2.人员结构。以市级骨干教师牵头,教科室指导组织实施,以校骨干教师、特级教师和一线青年教师为主要研究力量。

  课题负责人:汪尊明,男,市级骨干教师,本科学历,小学高级教师,教导处副主任;

  参与研究人员:

  徐 勇,男,小学高级教师,大专学历,数学教研组长;

  孙玉峰,男,小学一级教师,大专学历,团支部书记;

  张巾巾,女,小学一级教师,大专学历,

  邓秀梅,女,小学特级教师,大专学历。

  3.资料准备。学校图书馆查阅相关书籍和杂志;在网上查阅相关资料。

  4.经费保障。向学校争取经支持。

  四、阶段性安排

  第一阶段:课题申报、论证与调查阶段,时间:20xx年8月-20xx年9月;

  第二阶段:课题实践阶段,时间:20xx年9-20xx年6月;

  第三阶段:总结提升形成模式阶段,时间:20xx年7-20xx年9月

  五、 研究方法

  本课我们定位为行动研究,以实践研究为主要研究手段。我们的指导思想是“立足校本,在学中做,在做中求发展。”

  六、 研究人员及分工

  汪尊明:负责课题的规划、指导、实践与总结

  徐 勇:负责高年级的课堂教学实践研究

  孙玉峰:负责高年级的课堂教学实践研究

  邓秀梅:负责低年级的课堂教学实践研究

  张巾巾:负责中年级的课堂教学实践研究

  七、 本课题研究的成果显示

  1、具有可操作性的课堂教学实例;(用录像形式呈现)

  2、实践教师结合自己的实践写出相关文章(以论文形式呈现)

  3、结合具体教学内容编写出有一定特色的教学设计(以教学设计方式呈现)

数学教学设计12

  一、教材分析

  本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。

  二、学生学习情况分析

  刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

  三、设计理念

  本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

  四、教学目标

  1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

  2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;

  3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。

  五、教学重点与难点

  重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.

  六、教学过程设计

  教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结

  (一)熟悉背景、引入课题

  1.让学生看材料:

  材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的.年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。

  图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;

  如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;

  图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).

  1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).

  3.根据对数函数定义填空;

  例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理

  解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。

  [设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2

  (二)尝试画图、形成感知1.确定探究问题

  教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质

  教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方

  法吗?

  学生2:先画图象,再根据图象得出性质

  教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论

  教师:观察图象主要看哪几个特征?

  学生4:从图象的形状、位置、升降、定点等角度去识图

  教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。

  步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,

  在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?

  步骤四:规纳出能体现对数函数的代表性图象

  步骤五:作指数函数与对数函数图象的比较2.学生探究成果

  (1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。

  图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)

数学教学设计13

  教学目标:

  1.掌握基本事件的概念;

  2.正确理解古典概型的两大特点:有限性、等可能性;

  3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

  教学重点:

  掌握古典概型这一模型.

  教学难点:

  如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

  教学方法:

  问题教学、合作学习、讲解法、多媒体辅助教学.

  教学过程:

  一、问题情境

  1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

  二、学生活动

  1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

  2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

  (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

  这6种情况的可能性都相等;

  三、建构数学

  1.介绍基本事件的概念,等可能基本事件的概念;

  2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

  3.得出随机事件发生的概率公式:

  四、数学运用

  1.例题.

  例1

  有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

  探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

  探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

  学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

  探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

  (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

  例2

  一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

  一次摸出2只球,则摸到的两只球都是白球的概率是多少?

  问题:在运用古典概型计算事件的概率时应当注意什么?

  ①判断概率模型是否为古典概型

  ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

  教师示范并总结用古典概型计算随机事件的'概率的步骤

  例3

  同时抛两颗骰子,观察向上的点数,问:

  (1)共有多少个不同的可能结果?

  (2)点数之和是6的可能结果有多少种?

  (3)点数之和是6的概率是多少?

  问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

  学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

  问题:点数之和是3的倍数的可能结果有多少种?

  (介绍图表法)

  例4

  甲、乙两人作出拳游戏(锤子、剪刀、布),求:

  (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

  设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

  2.练习.

  (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

  (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

  (3)第103页练习1,2.

  (4)从1,2,3,…,9这9个数字中任取2个数字,

  ①2个数字都是奇数的概率为_________;

  ②2个数字之和为偶数的概率为_________.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.基本事件,古典概型的概念和特点;

  2.古典概型概率计算公式以及注意事项;

  3.求基本事件总数常用的方法:列举法、图表法.

数学教学设计14

  教学内容:

  数学趣味题二

  教学目标:

  1、通过解题,使学生了解到数学是具有趣味性的。

  2、培养学生勤于动脑的习惯。

  教学过程:

  一、出示趣味题

  1、小明在小红左边5米,小冬在小红左边8米,问小明和小冬之间有( )米。

  2、河中有几只鸭子在游泳。游在最前面的'一只鸭子后面有2只鸭子,游在最后面的一只鸭子的前面也有2只鸭子,游在中间的一只鸭子的前面和后面各有一只鸭子,河中共有( )只鸭子在游泳。

  3、一支铅笔二个头,二支半铅笔( )个头。

  4、走上一层楼梯要走10级,从一楼走到四楼要走( )级楼梯。

  5、解放军叔叔做了一个靶子,靶子分6格,小王射了几枪,每次都打中了,总分为100分,问小王打了( )枪?打中了哪几格?( )

  二、分析

  教师带领全班,整体分析。

  三、小组讨论

  四、交流汇报

  五、小结

  通过这两次的课程,你有哪些收获?

数学教学设计15

  许多老师都有这样的感受,好的教学设计是教学成功的一半,教师在教学中设计合理,再加上老师潜移默化的指导对教学效果有着重要的作用,小学数学教学设计反思。现在的教学理念是教师教学如何使用教材,是对教师教学评估的依据之一,但不能否定教材的编排具有逻辑上的错误。因此,如何内化学生,是要教师在课堂中如何使用教法进行加工、为学生提供一定的思想素材,使学生通过观察、分析最后归纳为自己的知识,更重要的是使学生的思维能力得到提高,这更需要教师在教学中设计合理的教学模式,结合有关的教学内容培养学生如何进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理、逐步学会有条理、有根据地思考问题。同时注意思维的敏捷和灵活,撇开事物的具体形象,抽取事物的本质属性,从而获取知识。

  一、设计生活实际、引导学生积极探究。这种教学设计有利于激发学生学习兴趣,使学生对新的知识产生强烈的学习欲望,充分发挥学生的能动性的作用,从而挖掘学生的思维能力,培养学生探究问题的习惯和探索问题的能力。正如:我校一年级的数学老师在教"10以内数的组成",她的教学是这样设计是"7的组成",她的设计如下:

  师:你们到过市场买过菜吗?

  生:有着不同的回答。

  师:你们都有爱吃鱼吗?(爱)。

  师:很好。因为鱼含有丰富的钙、铁、蛋白质等,对我们身体有用的物质。

  师:请同学们看上黑板,下面老师让大家来数一数黑板上的鱼(出示7条鱼的教具),谁来数一数黑板上老师挂了多少条鱼?

  生:学生争先恐后地回答(7条)。

  师:你能用算式来表示你是怎样数的吗?请同桌同学相互讨论写出你们的算式,看谁写得最多、最快。谁来说一说你是怎样想的?

  生:学生通过思考交流,然后各自说出自己的算法

  生:我把它看成3条鱼加上4条鱼等于7条鱼,列式为:3+4=7。

  生:我把它看成2条鱼加上5条鱼等于7条鱼,列式为:2+5=7

  生:我把它看成1条鱼加上6条鱼等于7条鱼,列式为:1+6=7

  师:你们说的都对。

  师:最后反馈小结。

  教师做到了:1、在教学中既根据自己的实际,又联系学生实际,进行合理的教学设计。注重开发学生的思维能力又把数学与生活实际联在一起,使学生感受到生活中处处有数学。这样的教学设计具有形象性,给学生极大的吸引,抓住了学生认识的特点,形成开放式的教学模式,学生很快就掌握了数"7"的合成,达到了预先教学的效果。2、给学生充分的思维空间,做到传授知识与培养能力相结合,重视学生非智力因素的培养;合理创设教学情境激发学生的学习动机,注重激发学生学习的积极性推动学生活动意识。3、在教学中也提出了质疑,让学生通过检验,发展和培养学生思维能力,使学生积极主动寻找问题,主动获取新的知识。4、合理地提问与讨论发挥课堂的群体作用,锻炼学生语言表达能力,教案《小学数学教学设计反思》。达成独立、主动地学习、积极配合教师共同达成目标。5、整个课堂教师始终保持着师生平等关系,不断鼓励与赞赏学生,形成互动。这样的教学,如果能上用多媒体展示小朋友参与到菜市场购买鱼的情景,并从中发现问题、解题课堂教学会更生动些。

  二、设计质疑教学,激发学生学习欲望,促使学生主动参加实践获取新知识。以下是笔者在教学"7的周长计算公式"的教学设计:

  师:前面我们学习过正方形、三角形、矩形、梯形,这些图形的周长是取决于什么?它们的公式是怎样的?

  师:我们先回顾一下正方形的周长计算,正方形的周长取决于什么?周长的计算公式是什么?

  生:取决于正方形的边长,即:C=4a

  师:正方形的周长和它的边长是什么关系?为什么?

  生:周长总是边长的4倍,因为四条边长相等。

  师:矩形的周长又取决于什么?周长计算公式是什么?

  生:矩形的长和宽的和:即:C=2(a+b)

  师:矩形的周长和它的长宽的和的关系是什么?为什么?

  生:周长总是等于宽与长的和的2倍;因为矩形两条对应边相等。

  师:今天我们一起来研究圆的周长计算公式,圆的周长取决于什么呢?

  生:(通过思考后,发现圆的直径不同,圆的大小也不同)圆的周长取决于的直径,直径不同周长也不同。

  师:圆的周长与直径之间又有什么样的关系呢?有没有象正方形、矩形那存在着一个固定的倍数关系呢?如果有我们就能够根据这个倍数关系来推导出圆周长的计算公式,对不对?(通过教师的引导学生实验、操作、学生自我质疑、最后发现公式)

  在这个教学笔者做到了:1、充分挖掘教材,利用学生已有的知识经验作为铺垫,在课堂中学生通过质疑、实验后归纳出圆周长和直径之间的倍数关系为3倍多一点。笔者趁机引入π,顺利地完成圆的周长的计算公式的教学。2、笔者重视传授知识与培养能力相结合,充分发挥和利用学生的智慧能力,积极调动学生主动、积极地探究问题,培养学生自主学习的习惯。3、在传授知识的同时注意了思维方法的培养,充分调动学生的智力因素与非智力因素,使学生主动获取知识。4、教学中创设符合学生逻辑思维方式的问题情境,遵循了创造学习的规律使学生运用已有的知识经验进行分析、比较、综合。

  三、创设问题情境,以情引趣,激活思维。教师的教学具有趣味地、合理地提出的问题同样引起学生积极探索,产生求知欲望。而补充知识的引导更能使学生发散思维,更好地培养学生的思维能力。例如:我校四年级教师在教学"分数的'分数的加法时"的设计。

  师:出示苹果的教具问学生你们都有吃过苹果吗?

  生:吃过。

  师:如果你妈妈买回的苹果只有一个,而你又要把苹果分给你的爸爸和你的妈妈,你会怎样分呢?

  生:思考后汇报,有的平均分三等份,有的分成四等份。

  师:提出分成四等份的情况,如果你爸吃了一份,吃了几分之?(四分之一),如果你妈妈也只吃了一份,剩下的由你自己吃,你应该吃了几分之几?

  师:出示条件:有一个苹果,小明吃了这个苹果的2/4,爸爸吃了这个苹果的1/4,

  师:看了这些条件你可以提出什么问题?

  生:小明比爸爸多吃了几分之几?

  生:爸爸比小明少吃了几分之几?

  生:小明与爸爸一共吃了几分之几?

  生:剩下几分之几还没有吃?

  …

  师:你们提的问题都很好。

  然后按照学生所提的问题一一解决。让学生从这些问题中通过观察、分析、比较、综合得到分数的加法规律是:"同分母分数的加、减法分母不变,只把分子相加减。"

  其教学特点是:1、重视课程的开发,也重视生活实际的数学概念,充分利用直观教学,遵循学生的具体思维到抽象思维的认识规律。2、重视学生非智力因素的培养,激发学生的学习兴趣,大大推动学生积极思考,勇于探索的精神。3、重视理解与巩固相结合并充分发挥教师的主导作用与学生的主体性相结合。4、给学生铺设合理的思维空间,补充问题的方法,开发学生的思维能力。5、树立平等的师生关系,有趣味地激发学生的学习兴趣。6、设疑问题具有严谨性与可接受性相结合,使学生在探究新知识轻松地获取知识。7、重视学生已有的知识经验,遵循从简单到复杂的认识规律,创设情境既符合学生实际,为探究、认识新知识的结构奠定基础。

  教师的教学设计准线不同对学生的智力与非智力因素有着直接的影响。学生要养成好的学习生活习惯,取决于一个教师教学中充当怎么样角色。俗话说:兴趣是最好的老师。对教育者来说,应"以人为本",而不是以知识为本。教师对每一节课多付出心血,并不意味着成了正比例。要对每个学生充分了解合理设计教学,这样才能激发学生的学习兴起,才能触动学生的学习动机,才能使学生学会自主学习的好习惯。

【数学教学设计】相关文章:

数学教学教学设计04-15

数学教学设计06-29

数学教学设计05-26

数学《比》教学设计05-08

数学教学设计06-12

小学数学教学教学设计04-17

小学数学教学设计06-27

初中数学教学设计03-03

幼儿数学教学设计02-15

数学游戏教学设计06-12