初中数学教学设计
作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?以下是小编整理的初中数学教学设计,欢迎阅读,希望大家能够喜欢。
初中数学教学设计1
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的`、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲 望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
教学过程:
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
初中数学教学设计2
教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识:
一、联系生活、感知数学
“数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。
二、身临其境,探索规律
“数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。
在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。
1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。
2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。
3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。
4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。
三、由点到面,触类旁通
复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的'交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。
总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。
初中数学教学设计3
在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。
一、注重类比教学
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:
《正比例函数》教学流程
(一)环节一:概念的建立
通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。
(二)环节二:函数图象
这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。
(三)环节三:探究函数性质
让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的.变化规律。这几个方面来归纳,最终得出正比例函数的性质。
(四)环节四:概念的归纳
将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。
二、注重数形结合的教学
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:
(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到方法的掌握,达到认识上的状态。
(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。
关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。
初中数学教学设计4
一、 基本情况分析
1、学生情况分析:
通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。
2、教材分析:
本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。
第二十七章、相似
本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。
第二十八章、锐角三角函数
本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。
第二十九章、投影与视图
本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。
二、 教学目标和要求
1、 知识与能力目标知识技能目标
理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。
2、过程与方法目标
通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的`学习方式,提高学习质量,逐步形成正确地数学价值观。
3、情感、态度与价值观目标
(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。
(2)通过体验探索的成功与失败,培养学生克服困难的勇气。
(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。
(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。
三、 提高教学质量的主要措施
l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。
7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。
8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。
初中数学教学设计5
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的.关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
初中数学教学设计6
在教学过程中,很多教师总认为自己在上课中讲得井井有条,知识条理十分透彻,演算透彻清晰,但结果是有大多数学生不能举一反三,数学学习困难重重。产生这种现象的原因,多数教师都归因于学生素质差、家庭教育环境不良等教师以外的因素,很少发现是自己教学能力和素养导致而成。
课堂教学是师生的双边活动。课堂教学的实质是师生双方的信息交流,共同学校的过程。教师得知学生在数学学习很困难时,是否想到了可能教师自己对教材理解不够,没有准确地把握教材的重点、难点,对教材内容层次没有理清和教学方法不适呢?《数学课程标准》指导下,我们的数学教学目的是要学生在数学学习中,由“听”到“懂”,再到“会”,最后到“通”。为此,教师必须深刻反思自己的教育教学行为,批判性地考察自我主体行为表现及其行为依据。通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高课堂教学效能,到达提高教学质量的目的。现就以下几方面谈谈自己的看法。
一、教师要反思教育观念
新课标下要求教师要改变学科的教育观,始终体现“学生是教学活动的主体”科学理念,着眼于学生的终身发展,注重培养学生浓厚的学习兴趣和正确的学习习惯。数学非常重视教学内容与实际生活的紧密联系。但是在教学活动中还是有不少教师习惯于传统的教学模式,偏重于知识的传授,强调接受式学习,这样使很多学生在学习数学上失去了兴趣。教学中教师要抓住时机,不断地引导学生在设疑、质疑、解疑的过程中,创设认知“冲突”,激发学生持续的学习兴趣和求知欲 望,顺利地建立数学概念,把握数学定义、定理和规律。
教师在探究教学中要立足与培养学生的独立性和自主性,引导他们质疑、调查和探究,学会在实践中学,在合作中学,逐步形成适合于自己的学习策略。例如,在学习等腰三角形三线合一的性质时可以让三个同学合作分别去画出顶角平分线、底边上的高、底边上的中线,这是学生会发现三条线为什么会是一条线?证明三角形全等的方法有多种,为什么“角边边”不能判定两三角形全等?在学习镶嵌时,可以提这样的问题,为什么正三角形、正方形、长方形正六边形可以,而正五边形不可以?等等。
这样教师不断地设问,不断地质疑,就能引导学生进行积极思考,激发起学生浓厚的学习兴趣和求知欲 望,促使学生在生活中发现和归纳各种各样的数学规律,为下一步学习数学知识打下坚实的基础。所以我们的教师必须反思自己的教育观念,紧紧抓住主导和主体的关系,解决好学生学习积极性的问题。
二、教师要反思教学设计
教学设计是课堂教学的蓝本,是对课堂教学的整体规划和预设,勾勒出了课堂教学活动的效益取向。设计教学方案时,教师对当前的教学内容及其地位(概念的“解构”、思想方法的“析出”、相关知识的联系方式等),学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都应该有一定的思考和预设。教学设计的反思就是对这些思考和预设是否考虑到了。教学后,要对实际进程和学生的接受程度进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。
三、教师要反思教学方法
教师教得好,本质上讲是学生学得好。在实际教学过程中我们的教学方法是否合乎学生实际呢?上课、评卷、答疑解难时,有的'教师自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,教师的讲解并没有很好地从学生原有的知识基础出发,从根本上解决学生认识上鸿沟问题。有的教师只是一味的设想按照自己某个固定的程序去解决某一类问题,也许学生当时听明白了,但往往是是而非,并没有真正理解问题的本质。
初中数学教学中,例习题教学是数学教学中重要的组成部分,是概念类教学的延伸和发展。教材中的例习题都是编者精心编制的,具有典型性和启发性,它们不仅是对基础知识的巩固,同时对培养学生智力、掌握数学思想和方法,及培养学生应用数学意识和能力,提高学生的数学素养等都有重要意义。
四、教师要反思学生学习方法
《数学课程标准》指出,有效的数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,因此,转变数学学习方式,倡导有意义的学习方式是课程改革的核心任务。初中学生年龄一般在十二至十六岁之间,正处生长发育期,思想不成熟,行为不稳定,办事情绪化,喜表露,易冲动,既有面见师长的羞涩,有初生牛犊不怕虎的习性。在数学学习上凭兴趣,看心情,个性反映较为突出,有不少学生学习方法也存在一定的问题。同时他们往往又很难发现自己的学习方法不妥。所以,教师就应该反思学生的学习方法,找一找哪些问题,并帮助他们努力改变不恰当的方法,使学生达到《新课标》的要求。
总之,为学之道,必本与思,思则得之,不思则不得。教学也是这个规律,只教不思就会成为教死书的教书匠,学生也得不到很好的受益。要想成为优秀的教师,只有一边教书一边总结,一边教书一边反思,才能实现自己的目的。
初中数学教学设计7
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的'是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
初中数学教学设计8
我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。
数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:
1、注重了数学与生活之间的联系。
《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。
2、概念的得出注重了探究过程、分析过程,体现了活动主题。
通过一组实例,分析共性,找共同特征。
3、铺垫导入恰当,让预设与生成合情合理。
课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。
4、注重了数学陷阱的设置。
把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。
5、注重了学科间的渗透。
在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的`,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。
初中数学教学设计9
一、素质教育目标
(一)知识教学点
1、要求学生学会用移项解方程的方法。
2、使学生掌握移项变号的基本原则。
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。
二、学法引导
1、教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。
2、学生学法:练习→移项法制→练习。
三、重点、难点、疑点及解决办法
1、重点:移项法则的掌握。
2、难点:移项法解一元一次方程的步骤。
3、疑点:移项变号的掌握。
四、课时安排
3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片。
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。
七、教学步骤
(一)创设情境,复习导入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。
(出示投影1)
利用等式的性质解方程
(1)xx;(2)xxx;
解:方程的两边都加7,解:方程的两边都减去x,
得x,xx 得x,
即x 、 合并同类项得x。
【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。
提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?
(二)探索新知,讲授新课
投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。
(出示投影2)
师提出问题:
1、上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?
2、改变的项有什么变化?
学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间。
师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号。
【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。
师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项、这里应注意移项要改变符号。
(三)尝试反馈,巩固练习
师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。
学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。
【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的.步骤和格式。
对比练习:(出示投影3)
解方程:(1);(2);
(3);(4)、
学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。
师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验、)
【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。
巩固练习:(出示投影4)
通过移项解下列方程,并写出检验。
(1);(2);
(3);(4)、
【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。
(四)变式训练,培养能力
(出示投影5)
口答:
1、下面的移项对不对?如果不对,错在哪里?应怎样改正?
(1)从,得到;
(2)从,得到;
(3)从,得到;
2、小明在解方程时,是这样写的解题过程:
(1)小明这样写对不对?为什么?
(2)应该怎样写?
【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”、要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。
(出示投影6)
用移项解方程:
(1);(2);
(3);(4)、
【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。
学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。
(出示投影7)
解下列方程:
(1);(2);(3);
(4);(5);(6)、
【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。
(五)归纳小结
师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点、②检验要把所得未知数的值代入原方程。
初中数学教学设计10
一、教学目标:
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.
四、教学过程:
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,
得到方程:80a+150b=902 880.
2.新课教学:
引导学生观察方程80a+150b=902 880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .
(2)课本P80练习2. 判定哪些式子是二元一次方程方程.
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.
问题:参加活动的.36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.
并提出注意二元一次方程解的书写方法.
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程 x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
7.布置作业:(1)教材P82; (2)作业本.
教学设计意图:
依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.
在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学
内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.
初中数学教学设计11
教学目标
1、知识与技能:
(1)理解一元一次不等式组及其解集的意义;
(2)掌握一元一次不等式组的解法。
2、过程与方法:
(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。
(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。
3、情感、态度与价值观:
(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。
(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。
2学情分析
本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。
另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。
3重点难点
1、教学重点:对一元一次不等式组解集的认识及其解法。
2、教学难点:对一元一次不等式组解集的认识及确定。
3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。
4教学过程4.1第一学时教学活动活动1【导入】温故知新
教师提问:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
针对性练习:
(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)
活动2【讲授】创设问题情景,探索新知
1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水
超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)
2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:
超过1 200 t和不足1 500 t。
3、问题1:如何用数学式子表示这两个不等关系?
1)引导学生一起把这个实际问题转换为数学模型:
满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。
设用x min将污水抽完,则x需同时满足以下两个不等式:
30x>1200, ①
30x<1500 ②
2)教师归纳一元一次不等式组的意义:
由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。
(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)
4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?
1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,
运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。
2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。
(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)
5、问题3:如何求得这两个解集的公共部分?
学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。
(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)
教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。
(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)
形式一:用两种不同颜色表示这两个解集
1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。
(1)这两种颜色把数轴分成几个部分?
(2)每一个部分分别表示哪些数?
(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?
2)学生通过自主探究、合作交流,得到这3个问题的正确答案。
3)得出结论:
只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。
4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。
(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。
类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。
形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。
(设计意图:介绍不同的`形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)
6、问题4:如何表示这个可取值范围?
教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为40
7、小结并解决课本问题:原不等式组中x的取值范围为40 (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。) 8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳: 在数轴上,若在40 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)把这些解集分别在同一条数轴上表示出来; (3)确定各个不等式解集的公共部分; (4)写出不等式组的解集。 (设计意图:及时进行小结,使学生对所学知识更加的系统化。) 公式 教学目标 1.了解公式的意义,使学生能用公式解决简单的实际问题; 2.初步培养学生观察、分析及概括的能力; 3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。 教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式. 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。 四、教法建议 1.对于给定的`可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。 教学设计示例 公式 一、教学目标 (一)知识教学点 1.使学生能利用公式解决简单的实际问题. 2.使学生理解公式与代数式的关系. (二)能力训练点 1.利用数学公式解决实际问题的能力. 2.利用已知的公式推导新公式的能力. (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践. (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美. 二、学法引导 1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点 2.学生学法:观察→分析→推导→计算 三、重点、难点、疑点及解决办法 1.重点:利用旧公式推导出新的图形的计算公式. 2.难点:同重点. 3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差. 四、课时安排 1课时 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式. 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏. 在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题. 板书:公式 师:小学里学过哪些面积公式? 板书:S=ah (出示投影1)。解释三角形,梯形面积公式 【教法说明】让学生感知用割补法求图形的面积。 20xx年寒假期间,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。 教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括: (1) 教学目标。 在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。 (2)任务分析 进行任务分析的重点在于关注几个要点: 一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。 在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材。对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。 (3)教学思路。 主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。 (4)教学反思。 主要针对如下一些问题开展反思: 是否达到预期目标?如果没有达到,分析其原因,并提供改进的方案。有哪些突发的灵感,印象最深的讨论或学生独特的想法?哪些地方与教学设计的不一样,学生提出了哪些没有想到的问题?为什么会提出这些问题? 了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。 今天,李老师带着我们去看舞剧《羚羚的故事》。到那里以后,先是主持人讲话,之后是大队辅导员李老师讲话,她带我们一起回顾了羚羚的故事的精彩镜头,看完了我觉得他们太辛苦了! 第一幕讲的是在美丽的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟妈妈在说话,妈妈说:“你们看,蓝蓝的天空多漂亮啊!”羚羚说:“是啊,你看那朵云彩多像我啊!”妈妈说:“这美丽的一切是很多很多妈妈的牺牲换来的!”之后,一位来西藏旅游的.少年来了,她和小羚羊玩耍,对小羚羊特别好。 第二幕讲的是羚羚听见“砰”的一声,她问妈妈是怎么回事,妈妈说:“这是枪声,咱们赶快跑吧!”羚羚说:“妹妹呢?”她们到处找,突然发现妹妹已经被击中了!羊妈妈刚想去救她,但是来不及了,偷猎者来了!妹妹被偷猎者带走了,羚羚非常伤心! 第三幕讲的是小羚羊们又累又饿,走不动了。羊妈妈说:“孩子,坚持一下吧!”羚羚问:“妈妈,我们要去哪儿?我们为什么要离开可可西里?”妈妈说:“我们要去一个没有人类的地方,因为现在的可可西里已经不是我们的家园了。”羚羚问:“妈妈,您不是说人类是我们的好朋友么?我们为什么要远离他们?”羊妈妈说:“因为现在来可可西里的人是魔鬼,他们要杀掉我们,用我们的毛皮做衣服,我们要离开这里!”小羚羊们走着走着,大雪来了,大雨来了,大风来了,羚羚实在受不了了。这时,她们的面前出现了一片沼泽地,小羚羊们很着急,怎么过去呢?羊妈妈说:“我们已经没有选择了!”说着,所有的羊妈妈都跳了下去,她们背着小羚羊过去了,但是羊妈妈们却被埋在了沼泽地里。羚羚和小羚羊们大喊着:“妈妈!妈妈!”这时少年来了,她正在寻找小羚羊,小羚羊看到她,跑了过去。少年说:“羚羚,是你吗?你身上怎么这么多伤?你的妈妈呢?”羚羚伤心地说:“妈妈死了,妹妹也死了!” 第四幕讲的是少年带着她的朋友们来了,他们都是动物保护者,他们同小动物们一起打败了偷猎者。小羚羊们又有了新的家园。这时候羚羚也当妈妈了,她们过上了幸福的生活! 看完这个故事,我想说:“可恶的偷猎者,不许再杀害小动物了!”因为中国的珍稀动物越来越少,比如大熊猫、扬子鳄、白鳍豚,我必须要保护小动物,我们每个人都要保护小动物,它们是我们人类的好朋友!让我们每个人都做环保的小卫士! 研究教学方法的组合运用这一课题,对提高思想政治课教学质量有重要的意义。教学方法是多种多样的,每一种方法都有自己的特点和适用范围。师生在教学中可以也应该自主选择不同的教和学的方法,努力创造新的教和学的方法。教学有法,但无定法,贵在得法,教师教学时必须注意方法选择。我在教学中常用的方法有:演讲法、发现教学法与探究教学法 、训练与实践式教学方法、复习测验式教学法、小组讨论法等。其中用得最多的是演讲法,其优势在于: (1)演讲法可以说明一些原则,可以叙述一些事实,解决高中政治教学当中某些内容抽象学生难以理解的问题和概念。在新课程标准下,高中政治教学目的在于向学生传授基本的理论知识从而让学生具备正确是世界观和方法论,从而具有在现实生活当中解决问题的能力。 虽然高中政治是一门与时事关系非常密切的学科,但是它同样具有抽象性和蒙蔽性,这些仅仅靠学生的自发理解是解决不了的,这时候,演讲法就具备了相当的优势。通过演讲法,教师可以将政治学科当中难以理解的问题结合时事和例子深入浅出的讲述清楚,插入有趣的例子和时事,这样就可以将时效性和趣味性结合起来,既解决了教学重点和难点,同时也可以提高学生对政治这门学科的兴趣,让他们明白,这门学科对他们而言具有相当的实用性,而又不显得课堂空荡荡。教师就可以通过“演讲法”,把教学内容和例子相结合,就可以解决这些对学生而言非常抽象的概念和理念,毕竟,高中的学生的理解能力在挖掘发展当中。 (2)可以节省教学的时间,在高中政治教学的过程当中,有时候教学任务繁重在一节课当中,这个时候,“单向式”的演讲法就可以节省时间,能够顺利完成当节教学任务; 正如之前所说的,任何事物都有其两面性,演讲法有其优点,自然也有它的缺陷。它主要是在于「单向教学」的问题,教师不易掌握学生对教材的接受情况与了解的程度,同时也容易发生灌输式教学的危险,如果教师对课堂出现的问题处理能力不强或者语言表达能力不够,那么在使用演讲法时就很容易陷入让学生觉得枯燥乏味的情绪当中,因为毕竟来说高中政治这门学科对于学生来说已经有“枯燥无味”和“学了也没什么用”的这种先入为主的观念了,所以这时候对于高中的政治老师的课堂处理能力和语言表达能力就提出更高的要求对于使用演讲法来说。因此,当高中政治教师在使用演讲法之时,应当配合其它一些可以使学生参与的方法来使用,譬如:讨论式、问题式、游戏式等等,尽量让学生参与到课堂当中,同时通过语言的渲染力提高学生上课的情绪。 比如在讲述到“公民的政治权利”这个概念时,就可以提出当前社会当中易让人困惑的问题让学生参与讨论,通过这样的设问讨论,学生的情绪就非常高涨,纷纷发表自己的看法,最后再通过演讲法由教师进行总结,这样既可以加深对问题的理解,也可以调节课堂气氛,增强师生之间的互动性,这样就可以很好的弥补了演讲法本身的缺陷。教学的重点并不完全在于将一大堆的知识或材料倾倒给学生。学生积极、热切地参与在教与学的过程中是非常重要的。让学生多有运用手及脑的机会是有益处的。对高中这些年纪稍大一点的学生而言,他们自主性很强,有自己独立的思想,愈给他们参与的机会,就学习得愈好。 在教学目标的落实方面需要改进的主要是加强与学生的沟通,因为不管多好的方法,只有能被学生有效分享,为学生的学习提高助力,帮助学生理解教学内容的教学方法才是真正有效的方法。 近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。 一、加强广大师生对数学阅读重要性的理解 数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。 二、初中数学阅读教学的教学原则 在初中数学教学中进行阅读教学,应当遵循如下的教学原则: 1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。 2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。 3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。 4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。 5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。 三、实施数学阅读教学的具体途径 1.预习的阅读指导 在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。 2.数学教材的阅读指导 (1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。 (2)阅读概念 我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。 (3)阅读代数式 大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的`过程中要注意式子本身的特点及其普遍性。 (4)阅读例题 对于初中学生例题阅读的指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。 (5)阅读公式 不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。 (6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。 (7)阅读提示与说明 教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。 (8)阅读章头图和小结 章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。 3.加强课外阅读,丰富学生知识 近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。 四、数学阅读教学的价值 重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。 教材分析 1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。 2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。 学情分析 1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。 教学目标 1.熟练掌握去括号时符号的变化规律; 2.能正确运用去括号进行合并同类项; 3.理解去括号的依据是乘法分配律。 教学重点和难点 重点 去括号时符号的变化规律。 难点 括号外的因数是负数时符号的`变化规律。 教学过程 一、创设情景问题 青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。 请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米? 解:这段铁路的全长为100t+120(t-0.5)(千米) 冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。 提出问题,如何化简上面的两个式子?引出本节课的学习内容。 二、探索新知 1.回顾: 1你记得乘法分配率吗?怎么用字母来表示呢? a(b+c)=ab+ac 2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3 2.探究 计算(试着把括号去掉) (1)13+(7-5)(2)13-(7-5) 类比数的运算,去掉下面式子的括号 (3)a+(b-c)(4)a-(b-c) 3.解决问题 100t+120(t-0.5)=100t-120(t-0.5)= 思考: 去掉括号前,括号内有几项、是什么符号?去括号后呢? 去括号的依据是什么? 三、知识点归纳 去括号法则: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 注意事项 (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变; (2)括号内原有几项去掉括号后仍有几项. 四、例题精讲 例4化简下列各式: (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 五、巩固练习 课本P68练习第一题. 六、课堂小结 1.今天你收获了什么? 2.你觉得去括号时,应特别注意什么? 七、布置作业 课本P71习题2.2第2题 【初中数学教学设计】相关文章: 数学初中教学设计08-19 初中数学教学设计07-09 数学初中教学设计02-21 初中数学教学设计09-03 初中数学教学设计07-21 初中数学教学设计【精】08-06 初中数学优秀教学设计06-03 初中数学教学设计【热】07-30 【推荐】初中数学教学设计05-26 人教版初中数学教学设计03-26初中数学教学设计12
初中数学教学设计13
初中数学教学设计14
初中数学教学设计15