数学《比的应用》教学设计

时间:2024-09-04 07:35:54 教学设计 我要投稿

人教版数学《比的应用》教学设计(通用9篇)

  作为一无名无私奉献的教育工作者,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家整理的人教版数学《比的应用》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版数学《比的应用》教学设计(通用9篇)

  数学《比的应用》教学设计 篇1

  教学内容:教科书77页例2。

  教学目的:

  1.学生通过观察、探究、研讨等活动,使学生掌握“比较两数差与倍数关系”的两步应用题的结构,并学会分析解答此种应用题,并且进一步巩固含有三个已知条件的两步应用题的结构,掌握该应用题的分析方法,并会分步列式解答。

  ⒉ 初步培养学生主动探索、独立获取知识的能力,提高学生分析处理信息和解决简单实际问题的能力。

  ⒊ 渗透数学来自于生活实践的思想,培养学生初步的数学应用意识和实践能力。

  教学重点:理解和分析比较两数差与倍数关系的两步应用题的数量关系。

  教学难点:正确找到中间问题。

  教具、学具准备:

  多媒体课件一套,每学生各准备一条红、黄、紫色纸条。

  教学过程:

  一、 铺垫孕伏

  准备题:商店有红气球8个,花气球的个数是红气球的3倍。花气球有多少个?(学生读题后互相分析,独立解答。)

  解题思路:根据“花气球的个数是红气球的3倍”知道以红气球的个数为标准,花气球的个数有3个红气球那么多,所以求花气球多少个用乘法计算8×3=24(个)。

  二、 创设情景,提出问题

  ⒈ 教师描述情景

  10月1日是国庆节,商店用三种颜色的气球装点购物大厅,有黄色、红色、花色的。其中黄色的'气球有17个,红气球比黄气球少9个,花气球是红气球的3倍。

  ⒉ 根据提供的信息,学生编数学问题。可能出现以下问题。

  ⑴商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的3倍,花气球多少个?(例2)

  ⑵商店有黄气球17个,红气球比黄气球少9个,花气球是红气球的3倍,三种气球一共多少个?(此题以后再研究)

  ……

  三、自主探索,研究问题

  1.学习例2。

  (3) 学生读题,读后回答已知条件和问题分别是什么?

  (4) 独立试算,遇到问题小组内讨论解决。

  (5) 学生汇报交流,集体研讨辩论,学生可能会用彩色纸条(或画线段图)的方法来分析

  这道题,也可能用语言叙述。具体的思维过程可能是:

  方法1:根据“商店有黄气球17个”和“红气球比黄气球少9个”这两个条件就可以求出红气球有17—9=8(个),再根据“花气球是红气球的3倍”就可以求出花气球有8×3=24(个)。

  方法2:要想求花气球多少个,根据“花气球是红气球的3倍”就必须知道红气球有多少个,红气球的个数未知,根据”商店有黄气球17个”和“红气球比黄气球少9个”两个条件可以求出红气球的个数:17—9=8(个),再求花气球的个数:8×3=24(个)。

  ⑷教师小结:教师边口述题意,边用媒体依次显示线段图,结合线段图重点说明这道题的分析解答方法,并揭示课题。

  数学《比的应用》教学设计 篇2

  教学重点

  使学生理解求相同加数和的应用题的结构和数量关系.

  教学难点

  使学生真正掌握此类应用题的结构.

  教学过程

  复习导入

  1.口算.

  2×3= 2×5= 4×2= 5×1=

  5×3= 4×3= 5×5= 1×4=

  2.列式计算.

  (1)3个4相加是多少?

  (2)5个2相加是多少?

  3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

  4.教师板书课题:应用题

  新授

  1.出示例8(教师板书)

  同学们浇树,每个人浇4棵,3个人一共浇多少棵?

  2.分析解答例8

  (1)读题,找出题目中的已知条件、要求的问题各是什么?用小圆片摆一摆,表示出题目中的意思.

  学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

  (2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

  (3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

  学生边回答教师边板书:4×3=12(棵)

  口答:一共浇了12棵.

  3.进一步理解例8算式的意义.

  师问:谁来说一说,算式中的每个数分别表示什么意思?

  (算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

  4.讲解例9

  (1)出示例9(教师板书例9)

  小明买了3个扣子,每个5角钱,一共用了多少钱?

  (2)师:读题,已知条件是什么?要求的问题是什么?

  教师根据学生的.叙述板贴:

  (3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

  (4)汇报解答方法.(小组同伴分工完成下面的任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

  (5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

  教师要求:

  (1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

  (2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

  这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)

  这几道题还可以用什么方法解答?

  如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

  归纳质疑

  师:通过这节课的学习,大家有什么收获?

  1、乘法算式可以用乘法口诀来迅速的计算.

  2、求几个几用乘法计算.

  3、求几个几还可以用加法来计算,但是用乘法计算起来比用加法计算更简便.

  4、我们已经学习了“求几个几” 的文字叙述题和应用题.其实把文字叙述题加上不同的事情就是不同的应用题.

  数学《比的应用》教学设计 篇3

  教学内容:

  人教版六年级数学上册第54页例2和练习十二第1~4题。

  教学目标:

  1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

  2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

  3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

  教学重点:

  运用按比分配的知识解决生活中的实际问题。

  教学难点:

  提高分析问题与解决问题的能力。

  教学过程:

  一、情景导入。

  如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识——比的应用。

  板书:比的应用。

  二、探索新知。

  请同学们打开教科书的54页。

  出示教材54页例2

  阅读与理解:

  (1)、了解情境中的生活信息。

  (2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的.比。

  分析与解答:

  (1)、稀释液:500ml总分数:1+ 4=5

  1:4表示什么意思呢?

  浓缩液:水

  (2)、浓缩液和水的体积比是1: 4 。

  浓缩液的体积是稀释液的1/5。

  水的体积是稀释液的4/5。

  方法一:

  总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

  把每份是:500÷(1+4)=100(mL)

  浓缩液:100×1=100(mL)

  水:100×4=400(mL)

  数学《比的应用》教学设计 篇4

  教学目标:

  知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

  过程与方法:培养学生运用知识进行分析、推理等思维能力。

  情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:

  掌握按比例分配应用题的结构特点和解题思路。

  教学难点:

  正确分析解答按比例分配应用题。

  教法:

  启发引导法,演示法学法:观察比较,合作交流。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习解决下面各题:化简:27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。

  二、情景导入学生自由讨论

  1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?

  2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

  三、新授新知教学例2

  (1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的'体积分别是多少?

  (2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)

  (3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)

  (4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)

  水的体积:500×4=400(ml)

  答:稀释液100ml,水400ml。

  这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

  师:把我们学过的比转化成分率,怎样来做?

  生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)

  水的体积:500×4/5=400(ml)

  答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)

  做一做第1、2题,学生独立完成,抽生板演,集体讲评。

  五、全课总结

  今天我们学到了什么?

  六、家庭作业

  教材第50页,练习十二1-3题。

  教学反思:

  本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

  数学《比的应用》教学设计 篇5

  教学内容:

  冀教版小学数学六年级上册第二单元《比的应用》。

  教学目标:

  1、知识方面:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。

  2、能力方面:培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力,培养学生合作学习及归纳、总结、概括的能力。

  3、情感方面:创设民主和谐的学习氛围,在关注培养学生自主探索意识、灵活思维品质过程中形成积极的学习情感,让学生学会评价自我,欣赏他人。

  教学重点:

  掌握按比分配应用题的结构特点和解题思路。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  教具准备:

  课件

  学习过程:

  一、创设情境。

  (1)3月12号是植树节学校把种植88棵小树苗的任务分给六年级的每位同学,怎样分配才合理?(平均分配)

  (2)李明和黄华合办了股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  (在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。)

  二、自主学习,合作探究,

  1、出示题目:幼儿园大班30个人,小班20个人,把这些橘子分给大班和小班,怎样分比较合理?

  请同学们想一想:你认为怎样分合理?说一说你的分法?

  2、出示题目:这筐橘子按3:2该怎样分?

  自学提示:

  (1)可列表或画图。

  (2)联系比与分数的关系,将本题转化成相关的'分数应用题。

  (3)你还有其它的什么想法,用你的方法试试吧!

  3、小组合作。

  4、各小组汇报自己的分法。

  5、解题思路:

  (1)明确分什么?有多少?怎样分?

  (2)计算总份数。

  (3)根据具体数量与对应分数的关系解题。

  师:解决生活中的实际问题的时候,同学们要认真分析数量关系,可以选择多种方法解答。

  三、达标检测。

  1、填空。

  (1)把60根小棒按2:3的比分成两堆,一堆有()根,另一堆有()根。

  (2)把60根小棒按1:1的比分成两堆,一堆有()根,另一堆有()根。

  2、实际应用。

  (1)六年级三班要举行联欢会,班委决定要买12千克水果,据调查,爱吃苹果的同学和爱吃梨的同学的人数比是2:1,请你算一算,苹果和梨各买多少千克?

  (2)用2份水泥、3份沙子和5份石子配制成一种混凝土。配制4吨这种混凝土,需要水泥、沙子、石子各多少吨?

  3、拓展延伸。

  把刚开始上课时老师留下的第二道题完成。

  四、回顾整理,反思提升

  学生说说自己这节课的收获。

  五、课堂作业:

  课后练一练的1题、2题、3题。

  数学《比的应用》教学设计 篇6

  教学内容:

  人教版小学六年级数学第三单元第三节

  教材分析:

  《比的应用》是人教版小学数学六年级第十一册第三单元49页的内容。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个课例,掌握了《比的应用》的解题方法,不仅能有效地解决实际生活、现实工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”奠定了基础。

  学情分析:

  学生在学习了比的意义,比的基本性质,分数的意义等知识后,能将知识融会贯通,能将平均分与不平均分份数的知识联系和应用起来,使学生完全能找到按比例分配的方法。教师只起到启发,点拨和深化引导的作用。

  教学目标

  1、运用比的意义解决按照一定的比进行分配的实际问题;

  2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的.实际问题。

  教学重点和难点:

  能运用比的意义解决按一定比例进行分配的实际问题。

  教学过程

  一、复习旧知 情景导入

  (出示课件)

  六年级共有38人,其中,男,生和女生的人数比是7:12,男,生是女生的人数的,女生是男生的人数,男生是全班人数的,女生是全班人数的xxx。

  【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。为学习新知做铺垫

  2、同学们请看大屏幕:这里有哪些数学信息?请你读一读。(课件图片出示)

  (1)地球上的淡水含量与地球上水总量的比为3:100。

  (2)安利洗涤剂与水的正常比是1:8。

  (3)我们喝的鲜橙多中橙汁与水的比是1:9。

  (5) 妈妈做米饭时米与水的比是1:3。

  (5)一种咖啡奶,咖啡和奶的比为2:9

  3、生活中平均分配的问题:

  学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?

  4、李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  师板书:按比例分配

  【设计意图】学生能从三个例题中体会平均分配和按比例分配的实际意义。留下悬念,激发学生的学习兴趣。

  二、合作学习 自主探索

  (一)理解比例分配的意义

  把一个数量按照一定的比例来分配。这种分配方法通常叫做按比例分配。

  (二)学习例2:(出示例2):

  某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少?

  1、 指名读题、理解题意

  2、 学生尝试:请同学在练习本上尝试解答一下,再在小组内进行交流

  3、生汇报:不同做法的两名同学到前面板演,并要求板演的学生说出这样解答的道理

  解法1:总份数 1+4=5 解法2 :总份数 1+4=5 每份是500÷5=100(毫升) 浓缩液有 500×1/5=100(毫升)

  浓缩液有100×1=100(毫升) 水 有 500×4/5=400(毫升)水有 100×4=400(毫升)

  答:浓缩液有100毫升,水有400毫升。

  4、 提问:这两名学生解答的是否正确,要求学生说出每步求的是什么

  5、比一比:比较一下这两种解法有什么不同,与我们学过的哪些知识有关(可在小组内交流)

  学生汇报总结:

  方法1是按平均分的份数进行计算的:先算出每份的体积,再分别算出浓缩液和水的体积。

  方法2是按分数的意义进行计算的:先找出各部分数占总数的几分之几,再根据分数乘法的意义,分别算出浓缩液和水的体积。

  6、这道题做得对不对呢?我们怎么检验?

  提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

  强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

  (三)老师总结并强调计算方法:首先看清题里的条件给的是哪几个量的比再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。

  (四)质疑问难

  四、巩固新知 反馈练习,

  (1)填空:

  1)把20根小棒按2:3的比例分成两堆,一堆( )根,另一堆( )根。

  2) 把20根小棒按1:3的比例分成两堆,一堆( )根,另一堆( )根。

  (2)六(1)班要举行联欢会,班委决定买12千克水果,据调查,爱吃苹果的同学人数和爱吃梨的人数的比2∶1。请你算一算,苹果和梨分别买多少千克

  (3)生活中的问题

  李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  要求:独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

  【设计意图】此题为按比例分配问题的一个变式,解答开始上课时的疑问。引导学生找出部分量的比。让学生在解决实际问题的过程中感受学习的乐趣和价值。

  2)一种什锦糖是由奶糖、水果糖和酥糖按照2︰5︰3混合成的。要配制这样的什锦糖500千克,需要奶糖、水果糖和酥糖各多少千克?

  五、谈收获,课堂总结。

  数学《比的应用》教学设计 篇7

  课题:比的应用

  教学内容:义务教育课程标准小学数学六年级上册第三单元《比的应用》

  教学目标:1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

  3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独

  立思考、自觉检验的好习惯,增强学生学好数学的信心。

  教学重点:掌握按比分配应用题的结构特点和解题思路。

  教学难点:正确分析,灵活解决按比分配的实际问题。

  教学准备:教学课件卡片

  教学过程:

  一、复习导入

  1、复习求一个数的几分之几是多少的实际问题。

  2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

  二、讲授新课

  1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。

  2、利用课件出示例2。

  (1)学生读题,弄清题意。

  (2)引导学生找出题中所提供的数学信息。

  (3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的'结构特点。

  (4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。

  (5)小组讨论解题方法,然后进行汇报,并集体订正。

  (6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

  (7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

  3、 小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  三、巩固练习

  1、解决课前分卡片时所产生的问题。

  2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题

  的异同,并用自己喜欢的方法解决,后集体订正。

  3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,

  鼓励学生用不同的方法独立解决,并引导学生自行检验。

  四、拓展延伸

  利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

  五、课堂总结

  学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

  数学《比的应用》教学设计 篇8

  教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点:

  正确的判断应用题中的数量关系之间存在着什么样的比例关系。

  教训难点:

  能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程:

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的'量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对

  应,即可以列出比例:140 :2=X :5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结:

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

  数学《比的应用》教学设计 篇9

  【教材分析】

  《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。

  教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

  【学生分析】

  学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

  比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

  【教学目标】

  1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

  2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

  3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

  【教具准备】

  课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

  课上准备:有关课件、黄、蓝色颜料、量杯等。

  【教学重点】 理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

  【教学难点】 理解按比分配的实际意义,沟通比与分数之间的联系。

  【教学设计】

  一、情境导入

  情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)

  看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)

  现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)

  【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

  情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)

  【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】

  二、实验操作

  1、动手操作,调配绿色

  师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)

  要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。

  (学生动手操作,老师进行指导。)

  配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。

  【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

  2、观察发现,得出结论

  (1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)

  师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。

  学生调配的绿色可能会出现如下情况:

  ① 所有的'小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。

  ② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

  ③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

  (2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?

  根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。

  (3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。

  师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。

  【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】

  3、再次调配黄色与蓝色的比为3:2的绿色。

  (1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?

  学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。

  【策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。】

  师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?

  (2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。

  【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】

  三、动笔计算

  1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?

  2、学生独立试做,并交流不同的算法。学生可能出现的算法:

  方法1:3+2=5 120×3/5=72ml 120×2/5=48ml

  师:2/5和3/5各表示什么?说给同桌听一听。

  方法2:3+2=5 120÷5×3=72ml  120÷5×2=48ml

  师:谁能说说他是怎么想的?

  方法3:解:设一份量为xml。

  3x+2x=120

  5x=120

  x=24

  3x=24×3=72

  2x=24×2=48

  方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml

  3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)

  4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。

  【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】

  三、小结

  像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)

  【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】

  四、巩固应用

  1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。

  师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”

  2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)

  老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。

  咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。

  (反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)

  你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)

  【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】

  四、总结。

  1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?

  2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。

【数学《比的应用》教学设计】相关文章:

数学《比的应用》教学设计03-07

数学比的应用教学设计(精选12篇)05-21

比应用教学设计05-08

比的应用教学设计12-11

比的应用教学设计10-12

《比的应用》教学设计05-01

比的应用教学设计10-12

《比的应用》教学设计与教学反思06-16

《比例的应用》教学设计04-21

比的应用优秀教学设计06-12