长方体和正方体的教学设计
作为一名教学工作者,编写教学设计是必不可少的,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的长方体和正方体的教学设计,仅供参考,希望能够帮助到大家。
长方体和正方体的教学设计1
教学内容:
人教版教材数学五年级下册29页到30页教学目标:
1、探究、推导长方体和正方体体积的计算公式
2、理解掌握并运用长方体和正方体体积公式解决实际问题
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力
教学重点:
理解掌握长方体和正方体体积的计算公式
教学难点:
长方体和正方体体积公式的推导
教具准备:
学生准备小正方体(多个)PPT
教学过程:
一、复习
1、填空
(1)()叫做物体的体积。
(2)常用的体积单位有()()()
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
二、导入,确定学习目标
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)
2、出示学习目标:
(1)探究总结长方体和正方体的体积的计算方法
(2)运用长方体和正方体体积的计算公式解决实际问题
三、探究长方体体积的计算公式
1、回顾“以旧学新”的几何问题研究方法
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师PPT演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的'长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)
(2)把不同的长方体的相关数据填入下表(29页表格)
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
5、各小组学生合作学习后,让各小组汇报数据,汇总到一起填入表格,观察表格,总结长方体体积公式:长方体体积=长×宽×高用字母表示:V=abh
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:V=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。
四、练习
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)
2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)
五、总结
这节课你有什么收获?
板书设计:
长方体和正方体体积
长方体体积=长×宽×高
V=abh正方体体积=棱长×棱长×棱长
V=a×a×a=a3
长方体和正方体的教学设计2
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:长方体和正方体的特征。
难点:立体图形的识图。
一、出示课题,学习目标
掌握长方体和正方体的特征,认识它们之间的关系
二、出示自学指导
认真看课本认识长方体的特征和正方体的特征
三、学生看书,自学
四、效果检测
(一)长方体的特征。
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
小组讨论,然后完成p28的表格。请完整地说一说长方体的特征。
明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征。
对照长方体的特征学生自己研究正方体的特征。学生讨论、归纳后,教师板书:正方体面:6个完全相同的正方形。棱:12条棱长度都相等。顶:8个。讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。(正方体是特殊的长方体)
五、巩固反馈:
1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2、判断.正确的在括号里画√,错误的画×。
(1)长方体的六个面一定是长方形。()
(2)正方体的六个面面积一定相等。()
(3)一个长方体(非正方体)最多有四个面面积相等。()
(4)相交于一个顶点的三条棱相等的'长方体一定是正方体。()
六、课堂总结:
谁来说一说长方体和正方体的特征和它们之间的关系?
七、作业设计:
1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?
2、完成p29的“做一做”。
板书设计:长方体和正方体的认识比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同
长方体和正方体的教学设计3
教学目标:
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点难点:
长方体和正方体表面积的含义及其计算方法的'推导过程。
教学准备:
长方体、正方体模型。
教学过程:
一、猜测导入
出示两个纸盒(一个长方体、一个正方体)。
提问:长方体和正方体有哪些特征?
谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?
有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)
二、探究新知
1、引导探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。
(2)学生独立列式,指名汇报,并根据学生回答进行板书。
解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)
解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)
答:至少要用148平方厘米的硬纸板。
(3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?
2、自主探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?
(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。
(3)组织交流反馈。
3、揭示表面积的含义。
谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?
揭示:长方体或正方体6个面的总面积,叫做它的表面积。
(板书课题:长方体和正方体的表面积)
三、练习巩固
完成课本“练一练”以及练习四第一、二、五题。
四、全课小结
谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?
五、布置作业
1、做练习四第三、四题。
长方体和正方体的教学设计4
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的`关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体和正方体的教学设计5
教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的.图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.
长方体和正方体的教学设计6
教学内容:九年义务教育小学数学第二册第23页教学内容。
教学目的:
1.让学生直观认识长方体和正方体,初步掌握它们的特征,会辨认这两种图形。
2.培养学生动手操作能力、观察能力和初步的归纳概括能力。
3.精心组织学生活动,激发学生兴趣,培养学生主动探索的欲望和创新精神。
教学过程:
一、创设情境,激发兴趣
上课尹始,教师出示灯片:由若于长方形和正方形组成的童话式的图形王国城门图。然后教师谈话:"小朋友,在这里你能找出我们的老朋友长方形和正方形吗?"
[评析:活泼的画面,生动的语言,能很快地集中学生的注意,激发学习兴趣,既让学生回顾了旧知,又唤起了学生参与学习的欲望。]
二、直观导入,初步感知
教师拉开灯片的覆盖片,显示出长方体和正方体,并提出两个问题,(1)老师给大家介绍两个新朋友,它们是谁呢?有谁认识它们?(2)长方体、正方体跟我们的老朋友长方形、正方形相同吗?为什么?
[评析:运用恰当的电教媒体,引导学生在比较中直观感知长方体、正方体与长方形、正方形的区别,从而将面和体区别开来,使学生从整体上初步感知新知识。并且,恰当的电教媒体,生动的问题情境,能进一步激发学生的学习兴趣,唤起学生主动探索的欲望。]
三、引导探究,理解新知
1.认识长方体。
(1)动手操作,直观感知。
①教师依次出现两个长方体(一般的和特殊的)。问:谁认识它?小朋友想不想对自己动手做一个长方体呢?
②教师指导学生用长方体展开图自制长方体,让学生在做一做中,初步感知长方体的特征。
(2)小组研讨,建立表象。学生在做一做中,初步感知长方体以后,教师适时组织学生开展小组讨论:在制作长方体过程中,你发现了长方体的什么秘密?先小组讨论,再请小组代表汇报发言。
(3)验证认识,形成概念。
①当学生通过小组讨论,能用自己的语言归纳出长方体特征后,教师播放电视录相:一个长方体匀速转动,清晰、布序地显示长方体六个面,按着六个面一对一分解3排开。验证学生的认识长方体有六个面,每个面都是长方形{有时有两个面是正方形}。
②请小朋友一起有序地数出长方体的六个面。
[评析:心理学研究表明,新颖的、活动的、直观形象的剌激物,最容易引起儿童大脑皮层有关部位的兴奋,形成优势兴奋灶,认识长方体这一学习环节中,教师正是利用学生的心理特点,组织学生开展形式多样的学习活动。让学生在做一做中,感知长方体;在学生互相争论、互相补充、互相启发中建立长方体清晰的表象;再通过电视录相验证学生的认识,促使学生形成新的认知结构,这样,多种感官参与活动,有利学生掌握新知,发展能力,培养创新意识。]
2.认识正方体。
(1)出示正方体模型,问:小朋友认识它吗?正方体有什么特征呢?请朋友带着这一个问题看电视录相。
(2)观看电视画面,指名回答:正方体什么特征?
[评析:在学生已经认识了长方体的基础上学习正方体就比较容易了。因此,这个环节直接采用看录相,充分利用电教媒体的优势,让学生在看一看、说一说的?活动中,归纳、表述正方体的`特征。这样,有利于培养学生自学能力及初步逻辑思维能力。]
四、引导辨析,掌握本质
1.让学生分别找出学具中的长方体和正方体。
2.组织学生开展小组讨论:怎样辨别长方体和正方体呢?(先小组合作学习,再请小组代表汇报小组合作学习结果。
3.小结长方体和正方体的特征。
[评析:学生认识了长方体和正方体之后,教师及时组织学生开展讨论:你是怎样来区别长方体和正方体的?这一问题的提出,引发了学习思考。学生在思考过程中必须对长方体和正方体的有关知识进行搜索、归纳、整理,让学生在比较中进一步认识长方体和正方体,掌握学习方法,发展学生思维能力。
五、巧设练习,拓展新知
1.数一数。如图,
①图A中有几个小正方体?②至少补上几个小正方体就可以成为一个大正方体?(学生回答后,教师用电脑操作,图A→B,添加部分闪烁。)
2.想一想。如图:
(1)这些图片中哪些可以做成一个长方体?哪些不能?为什么?
(2)折长方体比赛。
(3)用12个小正方体摆成一个长方体,你有几种摆法?(在实物投影仪上操作展示)
[评析:这三组练习的设计,层次分明,学生在数一数、想一想、摆一摆的练习中巩固新知,发展学生空间观念。并且,恰当的电教媒体的应用,形象直观,简洁省时,让学生在一次次的成功体验中,主动参与知识的构建过程。]
4.做一做。让学生用橡皮泥做一个长方体或正方体,自由上台展示作品,并介绍制作经验。)
[评析:这一练习的设计,让学生在做长方体或正方体中,复习长方体或正方体的特征,了解长方体或正方体面与面之间的关系,渗透事物是相互联系的辨证唯物主义思想,培养学生动手操作能力,发展空间观念,激发创新意识。学生自由上台展示自己的作品并介绍制作经验将本课教学推向高潮,让学生在轻松、愉快的学习情境中,完成本课的学习。这样,学生掌握了知识,又培养了能力,发展了个性。]
[总评:长方体、正方体的初步认识,是在学生已初步认识了长方形和正方形的基础上学习的,是学生初次接触立体图形。教学中,教师根据低年级学生活泼好动,对新鲜事物感兴趣,但注意力不能长时间集中的心理特点,很好地贯彻了活动促发展的教学思想,为学生创设了一种愉悦、和谐、自主的课堂氛围,让学生在做一做、玩一玩、看一看、想一想的活动中,主动参与新知识的构建过程,从而激发了创新意识,掌握了知识,发展了能力。]
长方体和正方体的教学设计7
教学目标:
1、使学生通过观察、操作等活动认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
重点难点:认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。
教学准备:
1、这节课是在学生已经直观认识长方体和正方体的基础上,引导学生进一步探索成方体和正方体的特征。教学第10-11页的例
1、例2,完成随后的练一练及练习三1-5题。
2、光盘
3、长方体模型、框架,课件、长方体形状的纸盒等
教学过程:
一、导入新课:
师:我们已经学习了一些平面图形、长方形、正方形、三角形、平行四边形和梯形,都是平面图形。
今天我们学习立体图形。
像墨水瓶、罐头盒、魔方玩具、牙膏盒、排球、肥皂盒、台灯罩,这些物体的形状都是立体图形,(出示这组物体的课件)今天我们就来研究这里面的——长方体和正方体。
二、探究新知:
1、说说你见过的哪些物体的形状是长方体?
2、出示例1:
拿一个长方体的纸盒来观察:
⑴长方体有几个面?每个面是什么形状?哪些面完全相同?从不同角度看一个长方体,最多能同时看到几个面? 指导学生观察学具,直观地回答上面的问题。
得出: 长方体是由6个长方形(也可能有两个相对的`面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同。
⑵两个面相交的边叫做棱。长方体有多少条棱?量出每条棱的长度,哪些棱的长度相等?
指导学生观察、测量。
得出: 相对的棱的长度相等
⑶三条棱相交的点叫做顶点,长方体有多少个顶点? 学生在小组里观察交流,指名回答。
师:因为最多可以看到三个面,所以我们可以这样来画长方体。教师板演画法。
3、请学生对照着长方体说说长方体的特征。
4、出示铁丝做棱,的长方体框架,
观察一下:
⑴它的12条棱可以分成几组?怎样分?
⑵相交于同一顶点的三条棱长度相等吗? 通过观察得出:
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 它的12条棱可以分成4组 。
引导学生总结出上面的两个问题,并回答。
5、选择一个长方体实物,说说长方体的特征有哪些,量出它的长、宽、高。
6、出示例2 正方体有几个面、几条棱、几个顶点?它的面和棱各有什么特征? 师:长方体和正方体有哪些相同点,有哪些不同点呢? 同桌互相说一说,指名汇报。
7、选择一个正方体实物,量出它的棱长。
三、巩固练习
完成练习三1-4题。 第1题引导学生说说第三个图形有什么特别之处。你是怎样知道的? 第4题可先让学生判断出摆出的是长方体还是正方体,互相指一下长、宽、高(或棱长)的位置,再说说分别是多少厘米。
四、全课小结
通过这节课的学习你有哪些收获?
五、作业
完成练习三第5题。 尝试自己做一个长方体
长方体和正方体的教学设计8
教学内容:
第二单元《长方体和正方体》的整理复习,第十单元第20—24题及第30题。
教学设想:
组织学生根据提供的表格,自己整理、复习长方体和正方体的相关知识,掌握长、正方体的基本特征;正确计算长方体、正方体的棱长总和、底面积、表面积、不完全表面积和体积、容积;解决生活中的实际问题。进一步认识长方体和正方体之间的联系,会用底面积乘高计算体积,认识侧面积,会用侧面积加底面积计算表面积,并适当延伸推广到常见的圆柱体、多面柱体等。通过媒体演示,让学生感受点的运动形成线、线的运动形成面、面的运动形成体,初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。
教学目标:
1、学生应用表格法整理长方体正方体相关知识,掌握长正方体的基本特征。
2、正确进行长正方体的有关面积和体积的计算。
3、沟通长正方体之间的联系,适当延伸推广到各种柱体。
4、初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。
教学重点:
整理掌握长正方体的特征,正确应用。
教学难点:
沟通长正方体的联系及推广延伸。
课前准备:
ppt课件
教学过程:
一、激趣导课
1、出示:“xxx”一个点,问:同学们猜猜,这个“点”运动以后会留下什么?
2、动画演示:点运动的'过程和留下的痕迹。(直线、曲线、折线等)点运动成线。想象生活中点动成线的例子。(看到的喷气式飞机飞过留下的痕迹,流星、礼炮等的痕迹。)
3、问:点运动成线,线运动成什么呢?请看动画演示:线运动的过程和留下的痕迹。(长方形、正方形、平行四边形、梯形、圆形等)线运动成面。想象生活中线动成面的例子。(用粉笔擦擦黑板就是线运动形成面、甩动竹杆、甩动系着球的短线)小球这个点运动得到一条曲线—圆周,这条短线运动得到一个面——圆面。(动画演示)
问:面的运动又该成什么呢?猜猜看。
生猜,师说,(长方体、正方体、圆柱体、圆锥体等)动画演示:面运动的过程和留下的痕迹。面运动成体。想象生活中面动成体的例子。(一枚硬币在桌子上竖起旋转形成一个球等)
4、师:点动成线,线动成面,面动成体,这就是数学知识之间的联系。我们要善于发现知识之间的联系,融会贯通地学习掌握知识。这学期我们主要学习了长方体、正方体的有关知识,今天我们一起来复习一下,(板书:长方体正方体的复习)。希望大家能把这部分知识和前面学习过的相关知识联系,也能和我们虽然没学过但生活中见到过的现象联系起来,梳理知识,把握联系,解决实际问题。
二、梳理知识
师:前面大家学的都不错,你能按照下面的表格把长方体正方体的知识梳理一下吗?(出示表格)
学生可独立完成或者分组完成,小组交流,核对答案。
指名汇报,自由订正。
师:看得出来,同学们掌握的很好,我想运用这些知识解决生活中的一些应用也一定是小菜一碟吧。
三、解决问题
第一层次:练习课本第117页第20—22题
学生独立完成,指名说出算式。核对答案。有错订正。
第二层次:讨论
提问:刚才这2个同学做得非常好,你能告诉大家在计算表面积和体积的时候有什么需要提醒大家的吗?可以结合我们当时学习时的具体题目对大家说说。
讨论1:分清楚是计算表面积还是体积。
提问:你认为怎么分清楚?根据题目意思或者问题单位来分清楚。(举例见前面第二单元中第32页第8、9题和第34页第5—7题。)
讨论2:是计算底面积还是计算表面积。
讨论3:如果是计算表面积还要注意是算几个面及计算哪几个面。
教师小结:是的,计算表面积有时是算6个面的,我们通常称为计算表面积;对于没有6个面的,我们通常说不完全表面积,在计算的时候要注意是哪几个面,分别该怎样算。(第二单元第17 页第6题和第P18页第7、8题。)
第三层次:分析
谈话:看来很多同学关于长方体和正方体表面积计算掌握得不错,对下面这个实际问题你准备怎么解决呢?第118页第23、24题。
学生先独立思考,写出方案或者算式,组内交流。
加强联系。
提问:现在再回头看这张表格,从这份表格你还能发现长方体正方体之间有什么联系吗?
学生交流:正方体是特殊的长方体。(增加一行,填写在特征栏目)体积等于底面积乘高。(写在体积栏目)
四、拓展练习
1、出示第120页第30题。
如果学生有困难,可以找一张硬纸照题中的要求做一做,然后思考:剪去的每个正方形的边长应该是几厘米?做成的长方体纸盒的长、宽、高分别是多少?
2、一根长方体木料,它的长、宽、高分别是8分米、5分米和4分米。如果把它加工成一个最大的正方体木块,木料的利用率是多少?
引导学生思考并理解“利用率”后再解答。
3、把8个棱长都相等的正方体木块黏合到一起,成为一个大正方体木块。这个大正方体的表面积是96平方厘米,原来每个小正方体的体积是多少立方厘米?
引导学生分析要求小正方体的体积必须先求出它的棱长,要求小正方体的棱长又可以根据大正方体的表面积来求。
4、一个正方体玻璃缸,棱长6分米,用它装满水再把它倒入一个底面积为30平方分米的长方体水槽中。水槽里的水面高多少分米?
引导学生分析根据正方体的棱长可以先求出水的体积,再求水面的高度。
五、布置作业
1、课内作业:第117、118页第23、24题、第120页第30题。
2、课外作业:补充相关练习
长方体和正方体的教学设计9
教学目标:
1、使学生通过观察、操作等活动认识长方体正方体以及它的直观图,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,以及正方体和长方体的关系;
2、使学生在具体情境中,经历猜想、操作、验证、讨论、归纳等数学活动,培养学生的观察、概括能力及空间观念,发展数学思考;
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
通过多种数学活动探究长方体、正方体的特征;充分认识直观图;理解长方体的长、宽、高与每个面的长、宽的区别。
教学难点:
充分认识直观图;建立“立体图形”的概念,形成表象.
教学过程:
一、以旧引新,激发兴趣
1、图形王国里在开运动会,让我们一起去看看都有哪些图形参加?噢!来了很多的图形,谁给它们分分类?课件演示(说说分类的依据)。
2、老师拿的这些物体属于立体图形中的哪一种?(长方体)
引入:那对于长方体、正方体你了解多少呢?今天我们就再一次来领略,探究长方体、正方体的奥秘。(教师板书:长方体的认识)
同学们举生活中长方体或近似长方体的例子。
二、探究新知:
(一)认识长方体特征:
1、认识长方体各部分名称
认识长方体的面、棱、顶点。
让学生指着模型说一说哪些是面?哪些是棱?哪些是顶点
2、认识长方体的特征(分组合作学习)
(1)四人一小组合作,一边操作一边思考:
师:同学们根据自己准备的学具看一看数一数量一量剪一剪比一比小组合作学习。(教师对学生的操作应给予充分的肯定及鼓励。)
(出示探究表):
1、长方体有几个面?你是怎么数的?每个面是什么形状的?哪些面是完全相同的?你怎么知道的?
2、长方体有几条棱?你是怎么数的?哪些棱长度相等?你怎么知道的?
3、长方体有几个顶点?你来数一数。
师:自己先看一遍,有不理解的吗?强调“完全相同”的含义,即形状、大小都相同。
(2)学生以小组为单位讨论交流
(3)老师找学生分组板书面棱顶点的特征。学生汇报结果。
师:谁能把你们的学习结果汇报一下。
生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。(面怎样数不重复不遗漏?)
师:你们小组能派个代表给大家数一数这6个面吗?
生数。师引导有序的数。
师:你有这样的长方体吗?(有,出示)哪是相对的面?(指实物回答)
生:长方体相对的面面积相等。
师:说说棱的特点。
生:长方体有12条棱。师:你来数一数吧。(棱怎样数不重复不遗漏?)生:??
师:哪些棱长度相等?
生:相对的4条棱长度相等。(教师演示“相对棱相等”)(如果学生表述不出来,引导学生回忆在概括哪些面完全相同时是怎样说的。)
师:哪是相对的棱?生指。
师2:你用什么办法来证明相对的棱长度相等?
生1:用尺子量的。
生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。师:噢,你用的是反证法来说明。
师:谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)生数。
3、认识长方体的长宽高。
(1)小组合作以最快的`速度做一个长方体。
师:如果让你做一个长方体框架你打算准备几根小棒?(12根)12根一样长的小棒吗?生思考,汇报。
(2)合作做一个长方体。思考:12条棱可以分为几组?
(3)展示作品,并交流分组。
(4)揭示长方体的长宽高。
师指出:相交于一个顶点的三条棱的长度分别叫长、宽、高。通常把水平方向的两条棱中较长的叫做长,较短的叫做宽,把竖直方向的一条棱叫做高。(课件演示)拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。问:长方体有几条长几条宽几条高?
(二)、认识正方体
1、师:认识了长方体,那正方体它又有什么特征?它与长方体有没有关系呢?
2、独立探索正方形特征:每个同学拿出自己的正方体纸盒,通过前面小组合作探索长方体特征的方法,自己独立探索正方形的特征,并完成提单上表格的内容。
3、完成后指名回答,并板书。
4、课件演示正方体的特征,加深对正方体特征的认识。
(三)长方体、正方体的关系
1、正方体、长方体相同点与不同点。
(1)师:我们一对长方体、正方体进行了认识,认真观察课件上的表格,你发现了什么?
(2)根据学生的回答,课件出示正方体、长方体相同点与不同点。
2、长方体、正方体的关系
(1)师:通过你们的观察和探究,长方体和正方体之间有何关系?
(2)根据学生的回答,课件出示集合图。
三、练习巩固,深化认识:
引导学生认识特殊长方体面、棱特征,深化认识。
1、完成练一练,先同桌交流在指名2人汇报。
2、口答:说出下面每个长方体的长、宽、高各是多少.
3、激疑:对于最后一幅图表述你有什么看法?
(预设:最后一个图形不是长方体而是正方体,板书完整课题:正方体)
4、问:你觉得用什么方法可以把一个长方体变换成正方体?
长方体和正方体有什么样的关系
四、巩固练习
师:同学们,今天通过你们的合作探究,认识长方体和正方体的特征,大家都很棒。下面我们进行几个练习,检验一下同学们对所学知识的掌握情况。
小小法官会判断。
(1)长方体的六个面一定是长方形(×)
(2)长方体有6个面,每个面有4条棱,共四六二十四条棱。(×)
(3)一个长方体,它有两个面是正方形,那√)么它有四个面面积相等;
((4)长方体有6个面,12条棱,8个顶点。(√)
一、填空题。
1、长、宽、高都相等的长方体叫正方体,正方体是都特殊的长方体,6个面都是正方形,6个面的面积相等,12条棱的长度都相等。
2、左图是正方每个面的面积是648厘米体,也叫做立方体平方厘米;每条棱厘米。是8厘米8厘米;它的棱长总和是96正方体棱长总和=棱长×1
3、一个正方体的棱长总和是24厘它的棱长是8厘米米,2厘米。
1、用铁丝焊成一个长20厘米,宽15厘米,高10厘米的长方体框架,至少需要铁丝多少厘米?6
2、思考?一个长方体棱长之和是36厘米,长是4厘米,宽是3厘米,高是多少厘米?
五、全课总结。
很多时候,大家的进步就像一张纸,的厚度一样,微不足道,甚至难以发现,但我们不应该忽视它的存在,只要脚踏实地,日积月累,一定会收获更大成功,成功其实离我们很近,它就是点点滴滴人进步。
长方体和正方体的教学设计10
教学目标:
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的'确定性。
教学重点和难点:
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学过程:
一、复习引入
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)
(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)
三、议一议
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
如果用S表示底面积,上面的公式可以写成:
V=Sh
四、巩固练习
计算下面图形的体积
板书设计:
正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高
V=a3 V=Sh
长方体和正方体的教学设计11
一、教学目标:
1、经历观察、交流、归纳等认识长方体和正方体特征的过程。
2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。
二、教学重点:掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。
三、教学难点:形成长方体和正方体的概念,发展学生的空间观念。
四、教学准备:每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。
五、教学过程:
(一)、创设情境
师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)
师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)
师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?
生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。
师;看来同学们都是生活中的有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)
(二)、认识特征
1、师出示长方体模型。
师:(师拿模型)关于长方体,你还知道些什么?
生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)
师:再看一看两个面相交处有什么?
生:有一条边。
师:我们把两个面相交的这条边叫做棱。(板书:棱)
师:请同学们看一看三条棱相交处有什么?
生:尖。(或点)
师:三条棱相交的点叫做顶点。(板书:顶点)
师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。
学生按要求摸一摸。
2、师:下面我们就从面、棱、顶点这三个方面来研究长方体的特征。自己数一数你手中的长方体有几个面?
生:长方体有6个面。
师:你们同意吗?谁来说一说你是怎样数的?
生1:我是转圈数,再数左、右两边的两个面,共6个面。
(边说边演示)
生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。
(边说边演示)
师:她按上、下、前、后、左、右的顺序数,这样既不重复,也不容易漏数,这个方法不错,你们认为这些面有什么特征?
生可能回答:
生1:这6个面都是长方形。
生2:上、下两个面大小相等。
生3:左、右两个面大小相等。
生4:前、后两个面大小相等。
生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)
师:也就是说长方体的6个面不一定都是长方形,也有可能有两个面是正方形的,刚才同学们提到的上下面,前后面,左右面都是分别相对的,我们称它们为相对的面。那么上下面、前后面、左右面的大小是否真的相等呢?请同学们以同桌为单位,共同验证一下这些相对的面的大小是否真的相等呢?
学生同桌合作交流并集体汇报:
生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。
生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。
师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。
师:我们也可以用剪的方法,就像这样(指课件)将各个面分开,然后看相对的面能否完全重合,由于时间关系,我们就不在课上完成了,
下面我们来看一下大屏幕,(师用课件演示)
通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)
师:(师拿物体说)这是一种比较特殊的.长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。
3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?
生:8颗珠子。
师:这些珠子就是长方体的(顶点)
师:那么长方体有几个顶点?
生:长方体有8个顶点。
师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。
师:再数一数这个长方体用了几根小棒?
生:用了12根小棒。
师:这些小棒就是长方体的(棱)
师:谁来说一下长方体有几条棱?
生:长方体有12条棱。
师:长方体的棱有什么特点?
生1:这12条棱可以分成3组,相对的棱长度相等。
生2:这12条棱可以分成3组,每组4条棱长度相等。
师指名一生到前面演示
(师用课件演示说明)
师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。
4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)
学生观察,讨论。
5、师:谁来说一说正方体有哪些特征?
生1:正方体也有6个面,6个面都是正方形的。
生2:正方体所有的面完全相等,
生3:它有12条棱,所有的棱的长度都相等。
生4:有8个顶点。
师:同学们真聪明,下面咱们一起来看大屏幕。
长方体和正方体的教学设计12
【教学内容】西师版第十册第39页例1。
【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。
2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。
4让学生体会所学知识在实际中的应用价值。
【教学重点】
长方体、正方体表面积的计算方法。
【教学难点】
确定长方体每一个面的长和宽。
【教具学具】
教具:长方体、正方体纸盒(可展开)。
学具:长方体、正方体纸盒、剪刀。
【教学过程】
一、复习引入
师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?
出示一个长方体,指名摸它的表面。
师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。
二、探究学习
1探索长方体表面积的计算方法
出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?
4人小组合作完成这个长方体表面积的计算。
汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。
生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面
师:你能把这种求表面积的方法归纳一下吗?
生:长×宽×2+长×高×2+宽×高×2。
生2:我们组是把6个面的面积分别算出来后再相加。
生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。
师:为什么求出这3个面的.面积和,再乘2就可以了?
生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。
师:你能把这种求表面积的方法归纳一下吗?
生:(长×宽+长×高+宽×高)×2。(师板书)
师:观察真仔细,归纳能力真强。
师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。
2探索正方体表面积的计算方法
师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?
出示一个正方体,让学生自主探索方法。
汇报交流。
生1:我是把6个面的面积加起来。
生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。
生3:我觉得只要求出一个面的面积再乘6就可以了。
师:能给大家讲讲你的想法吗?
生:正方体6个面的面积都是相同的。
师:你能把这种求表面积的方法归纳一下吗?
生:正方体的表面积=棱长×棱长×6。(师板书)
三、巩固练习
1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。
2练习十第3题。先独立完成,再与同桌交流自己的算法。
四、课堂小结
通过这节课的讨论学习,你有什么收获和体会?
长方体和正方体的教学设计13
教学内容:
长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)
教学目标:
① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。
② 会用求长方体表面积的方法解决生活中的简单问题。
③ 培养学生的分析能力,同时发展他们的空间观念。
教学重点:长方体表面积的计算方法。
教学难点:长方体表面积的计算方法。
教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:
一、预习提纲:
1、预习教材第33~34页例题1。
2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。
3、把各自的'长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。
4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?
5、练习:
观察下面纸箱
二、展示汇报:
1、什么是长方体的长、宽、高?长方形的面积怎么计算?
2、交流汇报。
(1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:
A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。
B、 每个面的长和宽与长方体的长和宽有什么关系?
3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。
学生齐读概念后,教师板书课题:长方体和正方体的表面积。
(1)下面这个纸盒的表面积要怎么求呢?
前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m
左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m
这个包装箱的表面积是:
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66m
或者:
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=(0.35+0.28+0.2)×2
=0.83×2
=1.66 m 答:至少要用1.66 m 硬纸板。
(2)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂小结。
1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
2、你发现长方体表面积的计算方法了吗?
结论: = 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、巩固练习。
完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?
五、检测、反馈:
(一)完成P36练习六T1~3。
2、选择:
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
A、 2×7×2+6×7×2+6×2
B、(2×7+2×6+6×7)×2
C、2×7+2×6+6×7
3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)
A、(1×1+1×3+1×3)×2
B、1×1×2+1×3×4
C、1×1×2+1×4×3
讨论得出:底面周长×高=4个侧面的面积
4、思考题:
我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?
板书设计:
长方体和正方体的表面积的概念
= 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。
长方体和正方体的教学设计14
教学目标:
1、知识性目标:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。
2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教具、学具准备:
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
教学设计理念:
学生作为学习的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学习能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学习和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由近及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴近,在一定程度上能够调动儿童参与活动的积极性。
教学过程:
一、创设活动情景,复习导入
1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)
简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学习数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学习新知作了铺垫,使学生顺利进入下个环节的学习。
二、自主探究,合作交流
1、教学长方体、正方体表面积的概念
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用上、下、左、右、前、后标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。 (板书课题:长方体和正方体的表面积、长方体表面积的计算)
简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学习计算长方体的表面积做好准备。
2、教学长方体、正方体表面积的计算
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:
生1:我们组列式是65+65+63+63+53+53,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为652+632+532。我用652求上下两个面的面积;用632求出前后两个面的面积;用532求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(65+63+53)2。我用65求出上面;63求出前面;53求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)6+532。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;532求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:634+332,我用634求的是上下、前后四个面的面积;用332求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的.很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。
简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学习数学的兴趣,增强了合作和探求知识的意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。
三、巩固练习,深化理解
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽、、、、、、)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
四、联系实际、学以致用
1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?
2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)
3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)
简析:数学学习,从理解知识到具体应用,解决实际问题,这是一次飞跃。本节课所设计的练习题都是学生熟悉的生活实际物品,灵活应用长方体和正方体表面积的意义和计算方法解题,让学生运用所学知识解决实际问题在应用中发展智能。体会到生活中处处有数学,还了数学的本来面目。
五、课堂总结
师:这节课你有什么收获?
简析:归纳本节课的基础知识和基本技能,总结交流学习方法,对知识的掌握及今后的学习相得益彰。
反思:
学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。
长方体和正方体的教学设计15
一、课题
长方体和正方体的认识
二、教学目标
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点
(一)长方体和正方体的特征。
(二)认识立体图形,发展学生初步的空间观念。 教具准备
三、教具
长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。
四、教学过程
(一)复习准备
同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)
不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)
今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)
(二)新授
1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)
我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?
现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请......
(学生说)
3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的面是哪一个部分?
(请一个学生上台来说)
拿出你们的长方体和正方体摸摸看。 谁来指指长方体的棱是哪一个部分? (请一个学生上台来说)
拿出你们的'长方体和正方体摸摸看。
那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)
数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点
今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)
现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。
【长方体和正方体的教学设计】相关文章:
长方体和正方体教学设计04-17
长方体和正方体的认识教学设计02-13
长方体和正方体的认识教学设计04-10
长方体和正方体的体积教学设计04-14
《长方体和正方体》容积教学设计06-07
长方体和正方体的体积教学设计04-14
《长方体和正方体的认识》教学设计10-16
长方体和正方体教学设计(15篇)05-13
长方体和正方体教学设计15篇05-02