长方体和正方体的体积教学设计
在教学工作者实际的教学活动中,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?以下是小编整理的长方体和正方体的体积教学设计,仅供参考,欢迎大家阅读。
长方体和正方体的体积教学设计1
教学目标:
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
教学重点和难点:
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学过程:
一、复习引入
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的'体积是多少?
二、学习新课
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)
(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)
三、议一议
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
如果用S表示底面积,上面的公式可以写成:
V=Sh
四、巩固练习
计算下面图形的体积
板书设计:
正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高
V=a3 V=Sh
长方体和正方体的体积教学设计2
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的`体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体和正方体的体积教学设计3
教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.教学目标
1.理解并掌握长方体和正方体体积的计算方法.
2.能运用长、正方体的体积计算解决一些简单的实际问题.
3.培养学生归纳推理,抽象概括的能力.
教学重点
长方体和正方体体积的计算方法.
教学难点
长方体和正方体体积公式的推导.
教学用具
教具:1立方厘米的立方体24块,1立方分米的立方体1块.
学具:1立方厘米的立方体20块.
教学过程
一、复习准备.
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.
教师提问:拼成了一个什么形体?(长方体)
这个长方体的体积是多少?(4立方厘米)
你是怎样知道的?(因为这个长方体由4个1厘米3的.正方体拼成)
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们
来学习怎样计算长方体和正方体的体积.
板书课题:长方体和正方体的体积
二、学习新课.
(一)长方体的体积【演示动画“长方体体积1”】
1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆
出的长方体的长、宽、高.
2.学生汇报,教师板书:
教师提问:这些长方体有什么共同点?(体积相等)
不同点?(数据不同)
为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——
12个1立方厘米)
教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?
师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1
立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.
3.【演示动画 “长方体体积2”】
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.
一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.
一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层
第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.
一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层
思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长
方体的体积有没有关系?是什么关系?
(长方体的体积正好等于它的长、宽、高的乘积)
教师板书:长方体的体积=长×宽×高
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书: V=abh.
出示投影图:
4.自学例1.
一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
7×4×3=84(立方厘米)
答:它的体积是84立方厘米.
(二)正方体体积.
1.【演示课件“正方体体积”】
教师提问:此时的长,宽,高各是多少?
变成了什么图形?
这个正方体的体积可以求出来吗?
2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)
棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)
3.归纳正方体体积公式.
教师板书:正方体体积=棱长×棱长×棱长.
用V表体积,a表示棱长
V=a·a·a或者V=
4.独立解答例2.
光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
(分米3)
答:体积是125立方分米.
(三)讨论长方体和正方体的体积计算方法是否相同.
学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中
b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.
三、巩固反馈.
1.口答填表.
长
方
体
长/分米
宽/分米
高/分米
体积(立方分米)
5
1
2
4
3
5
10
2
4
正
方
体
棱长/米
体积(立方米)
6
30
0.4
2.判断正误并说明理由.
① ( )
② ( )
③一个正方体棱长4分米,它的体积是: (立方分米)( )
④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )
四、课堂总结.
今天这节课我们学习了新知识?谁来说一说?
五、课后作业.
1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
六、板书设计.
长方体和正方体的体积教学设计4
教学准备
教学目标
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2、教学重点/难点
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3、教学用具
教学课件、一个长方体拼制模型
4、标签
长方体和正方体的体积
教学过程
一、启发谈话,激趣引入
同学们,最近你们发现的城市有哪些变化呢?在城市里为什么要建这么多高楼大厦呢?如果建平房,会怎么样?
老师带来一件衣服,谁想试一试?(点名让一胖一瘦上来)问:同样一件衣服,为什么有的宽松,有的紧?(因为他们体型不一样,也就是占的空间不一样)这节课,我们就来研究跟空间有关的内容。板书课题:体积
二、学习“体积”、“体积单位”的概念
1、出示大、小苹果,问:哪只苹果占的空间大?你能从自己的身边选两件物体,比比它们的大小吗?
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
3、师揭示:物体所占空间的大小,叫做物体的体积。土豆和石块相比,谁的体积大,谁的体积小?
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的`体积单位
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
三、自主探究长方体和正方体体积公式
1、猜一猜:长方体和正方体体积跟什么可能有关?
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果
每排个数
每层排数
层数
小正方体个数
所拼长方体的体积
5、探究长方体的体积公式
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数
‖‖ ‖ ‖
长方体的体积=长×宽×高
6、学生汇报,交流,板书
7、讨论:摆出的长方体的体积,与它的长、宽、高有什么关系?得出结论:长方体的体积=长×宽×高,用字母表示:V=abh
8、应用公式,学习例题:一个长方体的长是7厘米,宽是4厘米,高是3厘米,它的体积是多少?
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
四、知识迁移推出正方体的体积公式
1、师:长方体和正方体之间有什么关系?
生:正方体是长、宽、高都相等的特殊的长方体。
师:根据这种关系,你能推导出正方体的体积公式吗?
2、师生共同归纳:正方体的体积=棱长×棱长×棱长
用字母表示为:V= a×a×a= a3
师强调:读作a的立方,表示3个a相乘。3 a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结
回顾一下,今天的学习大家有什么收获?
板书
长方体、正方体的体积
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数
‖ ‖‖‖
长方体的体积=长×宽×高
V =abh
正方体的体积=棱长×棱长×棱长
V = a×a×a= a3
长方体和正方体的体积教学设计5
一、教学内容:
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
二、教材分析:
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
三、教学目标:
1、使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;
2、培养学生实际操作能力,同时发展他们的空间观念;
3、在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
四、教学重点:探索长方体体积的计算方法。
五、教学难点:理解长方体和正方体体积公式的推导过程.
六、教具准备:挂图,若干个1立方厘米小正方块
七、学具准备:1立方厘米的正方体16块
八、教学过程:
一、创设情境,揭示课题
1、实物引入
上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
昨天的知识你掌握的很好,相信你,前置作业完成的也很认真吧?你准备了几个一立方厘米的小正方体啊?都摆成什么形状了?体积是多少呢?
根据学生回答,其他学生也动手摆。
你是怎样知道的?因为这个长方体由4个1立方厘米的正方体拼成,所以它的体积是4立方厘米。图下板书:4立方厘米
如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。
再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。
长宽高正方体个数体积
长方体1
长方体2
长方体3
长方体4
请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
三个不同的长方体,根据刚才的发现能猜出它们的体积吗?根据回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米
那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。
你是怎么摆的?体积是多少?和我们之前的猜想一样吗?
那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1
7×4×3=84立方厘米,所以它的'体积就是84立方厘米。
3、概括公式
根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?
V=abh
长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
出示正方体,出示公式。
正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。正方体的体积:V=a3
强调写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、课堂小结
这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体和正方体的体积教学设计6
教学目标
知识与技能
(1)理解体积的含义。
(2)认识常用的体积单位:立方米、立方分米、立方厘米。
(3)能正确区分长度单位、面积单位和体积单位的不同。
过程与方法
(1)运用观察实验的方法理解体积的含义。
(2)结合生活中的事物感知体积单位的大小。
情感态度与价值观
(1)发展学生的空间观念,培养学生的思维能力。
(2)渗透事物之间普遍联系的辩证唯物主义。
教学重点使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。
教学难点帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。
教学用具教师准备:盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。
教学过程
一、揭示课题
我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。
二、探索研究
1.实验观察
观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?
观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?
观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?
图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?
结论:物体所占空间的.大小叫做物体的体积。(板书课题:体积)
加深理解:(1)你知道什么是长方体和正方体的体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。
2.教学体积单位。
(1)介绍体积单位。
常用的体积单位有:立方米、立方分米、立方厘米。
(2)1立方米、1立方分数、1立方厘米的体积各有多大。
1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?
(3)建立表象,感知大小
投影显示第36页的第2题,让学生口答。
3.长度单位、面积单位、体积单位的联系与区别。
投影显示第31页的“做一做”的第一题,让学生说。
三、课堂实践
1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。
2、做练习七的第3题,学生独立做后集体订正。
四、课堂小结
学生小结今天学习的内容。
旁批:
后记:
长方体和正方体的体积教学设计7
一、教材分析:
本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
二、教学目标:
1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
三、教法与学法
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习.
四、教学过程
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的.状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)操作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:
(1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
拓展运用:
完成练习七第5—8题,让学生运用公式计算。
设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。
(四)总结全课,质疑解惑。
(1)谈收获:让学生说说这节课学习了什么?
(2)质疑解惑:还有什么疑问。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。
长方体和正方体的体积教学设计8
教学基本
内容六年制小学数学第十一册P25—26。
教学目的和要求
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
教学重点
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
教学方法
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
教学环节设计
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
依次出示例10中的`三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?
师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?
交流得出:V=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
长方体和正方体的体积教学设计9
教学内容:
冀教版义务教育课程标准实验教科书,六上《长方体和正方体的体积》教学目标:
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生归纳推理、抽象概括、迁移类比等能力。
教学重点:
长方体、正方体体积公式的推导。
教学难点:
理解长方体、正方体体积公式的推导过程。教学准备:
教师准备:1立方厘米的正方体模型12块;多媒体课件;
学生准备:1立方厘米的正方体若干个
教学过程:
一、复习:
1、什么叫做体积?
2、常用的体积单位有哪些?
3、填空:
(1)棱长1厘米的正方体,体积是()。
(2)棱长是()的正方体,体积是1立方分米。(3)棱长是()的正方体,体积是1立方米。
二、创设问题情境,揭示课题
1、让学生观察:这两个是什么图形?(出示两个形状不同的长方体)哪个长方体的体积大些?观察猜测。
2、引导学生得知用肉眼估算这种方法去计算日常生活中集装箱、体育馆等长方体的`体积是不科学不可取的,引出课题并板书——长方体和正方体的体积。
三、动手操作,探索思考。
1、操作准备。
⑴提出操作要求:用1立方厘米的小正方体12个摆成长方体,按教师要求小组摆出不同的长方体。
⑵将摆出的长方体放在桌上,并在答题卡上登记结果。
2、观察思考。
⑴提问:你能看出这些长方体的长、宽、高各是多少吗?让学生在小组内互相说一说,并说说是怎样看出来的,然后将这些长方体的长、宽、高依次记录在表格中。
⑵启发:怎样才能知道这些由1立方厘米的正方体摆成的长方体的体积?引导学生依次去数每个长方体中包含的小正方体的个数,并记录在表格中。 ⑶让学生在小组内互相核对填写的结果是否正确;选择一些长方体让学生说说是怎样数出它们所包含的小正方体的个数的。
3、分析推想。
(1)提问:观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你能从中发现什么?
引导学生提出猜想:长方体的体积是它的长、宽、高的乘积。
四、出示教学例题,发现规律:
1、谈话:通过刚才的操作和讨论,我们提出了一个猜想。那么长方体的体积是不是它的长、宽、高的乘积呢?这个问题还需要进一步研究。
2、依次出示例题中的三个长方体,提问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?
启发:看着图想一想,你能根据每个长方体的长、宽、高来思考上面的问题吗?
3、组织交流:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?
追问:如果再给你一个长5厘米、宽4厘米、高3厘米的长方体,你以想像出怎样用1立方厘米的正方体摆出来吗?摆出这个长方体一共要用多少个1立方厘米的小正方体?
五、概括公式:
1、提问:根据刚才操作过程中的发现,你能说说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?
通过交流得出公式:长方体的体积=长×宽×高。
2、继续提问:如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?学生尝试后,交流得出:V=abh。
3、长5厘米,宽4厘米,高3厘米的长方体,长缩短1厘米(图上从右边去掉一排),高增加1厘米(图上在上边增加一排),此时的长、宽、高各是多少?变成了什麽图形?
启发:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?交流得出:正方体的体积=棱长×棱长×棱长。
进一步启发:正方体的体积公式也可以用字母来表示。请你打开课本看一看。
33aa让学生阅读后说说正方体体积的字母公式,并重点追问的含义,进一步明确的读、写方法。
六、应用拓展:
1、做“试一试”。
先让学生说说长方体的长、宽、高分别是多少,正方体的棱长是多少,再让学生独立计算。交流时,注意让学生先说说长方体和正方体的体积公式,再说说分别是怎样列式的。
2、做“练一练”第1题。
先让学生分别说说每个图形的长、宽、高或棱长,再让学生独立完成。交流时关注学生是怎样得到每个几何体的体积的。如果有学生仍旧是用数小正方体个数的方法,要引导学生与用公式计算的方法相比较,强调用公式计算更简便。
3、做“练一练”第2题。
选择几个式子让学生说说其表示的意思,再让学生计算出每个式子的得数。
【长方体和正方体的体积教学设计】相关文章:
长方体和正方体体积教学设计07-06
长方体和正方体体积教学设计02-26
《长方体和正方体的体积》教学设计09-16
长方体和正方体的体积教学设计04-14
长方体和正方体的体积计算教学设计06-23
《长方体和正方体体积的计算》精品教学设计06-29
长方体和正方体体积的教学反思10-17
长方体和正方体的体积教学反思11-16
《长方体和正方体的体积》教学反思05-16
《长方体和正方体的体积》的教学反思06-25