三角形教学设计15篇
作为一名辛苦耕耘的教育工作者,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的三角形教学设计,希望对大家有所帮助。
三角形教学设计1
教学目标
一、知识与技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点
正确寻找全等三角形的对应元素
难点突破
通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的'过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:
课件、三角形纸片
教学过程
一、出示学习目标
1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。
二、直观感知,导入新课
教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知
1.全等形
我们给这样的图形起个名称----全等形。[板书:全等形]
教师让学生们想生活中还有那些图形是全等形.
2.全等三角形及相关对应元素的定义
教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
[板书课题:12.1全等三角形]
2.全等三角形的对应元素及表示
把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
以多媒体上的图形为例,全等三角形中的对应元素
(1)对应的顶点(三个)---重合的顶点
(2)对应边(三条)---重合的边
(3)对应角(三个)---重合的角
归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
.用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
3.全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
4.小组活动合作升华
学生分小组动手操作摆图形
小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。
三、巩固练习
四、教师用多媒体展示习题,学生做巩固练习。
五、小结:本节课都学到了什么
六、作业:
必做题课本33页习题第1题、2题.
选做题课本第34页第6题。
三角形教学设计2
本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的.思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:
(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?
(2)怎样判定一个三角形是等边三角形?
一。教学目标 :
1、使学生掌握定理及其推论;
2、掌握等腰三角形判定定理的运用;
3、通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4、通过自主学习的发展体验获取数学知识的感受;
5、通过知识的纵横迁移感受数学的辩证特征。
二。教学重点:
定理
三。教学难点 :
性质与判定的区别
四。教学用具:
直尺,微机
五。教学方法:
以学生为主体的讨论探索法
六。教学过程 :
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1、定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”)。
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2、推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3、应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1、已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2、已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
三角形教学设计3
教学目标
一、教学知识点
1、三角形全等的“边边边”的条件。
2、了解三角形的稳定性。
二、能力训练要求
1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
2、掌握三角形全等的“边边边”的条件,了解三角形的稳定性。
3、在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
三、情感与价值观要求
1、使学生在自主探索三角形全等的条件的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的'学习方式和良好的情感体验。
2、让学生体验数学来源于生活,服务于生活的辩证思想。
教学重点
三角形全等的条件
教学难点
三角形全等的条件
教学方法
动手操作、讨论、引导教学法
教具准备
多媒体投影、一幅三角尺、量角器
教学过程
一、创设问题情景,引入新课
1、复习提问:什么样的两个三角形是全等三角形?全等三角形有什么特征?
答:能够完全重合的两个三角形是全等三角形。全等三角形的对应边相等,对应角相等。
2、已知:如图,△ABC≌△DEF,请找出图中的对应边和对应角。
答:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F。
3、若有一个三角形纸片,你能画一个三角形与它全等吗?如何画?
答:能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出三角形一定与已知三角形纸片全等。
4、如上图,△ABC与△DEF满足上述六个条件的全部可以使△ABC与△DEF全等。如果满足上述六个条件中的一部分是否能保证△ABC与△DEF全等?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?
这节课就来探索三角形全等的条件。
二、新课讲授
1、只给出一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?
2、给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?
⑴、给出一个内角,一条边;⑵、给出两个内角;⑶、给出两条边。
分别按照下面的条件做一做:
⑴、三角形一个内角为30°,⑵、三角形的两个内角⑶三角形的两条边
一条边为3cm;分别为30°和50°;分别为4cm,6cm。
结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。
〔注解〕:若给出的条件能够使两个三角形全等,则班上所有同学所作的三角形都应该全等;若给出的条件不能使两个三角形全等,只要按照同一要求作图,只要有两位同学作的三角形不全等,即可以说明给出的条件不能使两个三角形全等。特别地,只要能举出相关的反例能说明两个三角形不全等,可以适当减少作图环节。
3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?
⑴、都给角:给三个角;⑵、都给边:给三条边;
⑶、既给角,又给边:①给一条边,两个角;②给两条边,一个角。
按照下面的条件做一做:
⑴、已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:三个内角对应相等的两个三角形不一定全等。
⑵、已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:边边边公理
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
注意:三边对应相等是前提条件,三角形全等是结论。
5、由上面结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了。
如图,是用三根长度适当的木条钉成一个三角形框架,所得框架的形状固定吗?用四根木条钉成的框架的形状固定吗?
三角形框架形状和大小是固定不变的,四边形框架形状是可以改变的。
三角形具有稳定性;四边形不具有稳定性。
举例说明生活中经常会看到应用三角形稳定性的例子?(投影片)
三、例题与练习
例1如图,当AB=CD,BC=DA时,图中的△ABC与△CDA是否全等?并说明理由。
答:△ABC与△CDA是全等三角形。
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
例2变式题如图,当AB=CD,BC=DA时,你能说明AB与CD、AD与BC的位置关系吗?为什么?
答:能判定AB∥CD
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
∴∠3=∠4,∠1=∠2(全等三角形对应角相等)
∴AB∥CD,AD∥BC(内错角相等,两直线平行)
四、课堂小结
1、通过这节课的学习活动你有哪些收获?
(1)只给出一个条件或两个条件时,都不能保证两个三角形一定全等。
(2)三个内角对应相等的两个三角形不一定全等。
(3)边边边公理:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(4)三角形具有稳定性,四边形不具有稳定性。
2、你还有什么想法吗?
五、作业
课本第160页,习题5.7数学理解第1、2题;问题解决第1题
六、板书设计
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
2、三角形具有稳定性。
三角形教学设计4
【活动目标】
1、教幼儿知道三角形和生活的名称和主要特征,知道三角形由3条边,三个角。
2、教幼儿把三角形和生活中常见实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力,空间想象力。培养幼儿的动手操作能力。
4、体验数学集体游戏的快乐。
5、初步培养观察、比较和反应能力。
【活动准备】
1、大小尺寸不同的三角形6个。
2、图形组成的实物图片4张。
3、孩子人手3个三角形若干、
【活动过程】
一、复习3的数数
引领幼儿手口一致点数3的物体。
通过点的横排、竖排,及三点随意排的点数让幼儿手口一致的数数,并引出通过三点连线形成三角形。
二、学习三角形特征
1、引导幼儿观察比较图形,幼儿每人一个三角形。
通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、引导幼儿观察几个不同形状,不同大小的三角形,通过验证得出三角形三条边,三个角;有三条边,三个角的图形都是三角形。
3、老师小结三角形特征,使幼儿获得的知识完整化。
三、复习巩固三角形的特征
1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。
请幼儿一一找出三角形,并说出为什么?
2、请幼儿从图形拼图中找出三角形,将图片一一出示。
请幼儿观察说出这些图象什么?
哪些部分是用三角形拼成的?用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
延伸活动:
在区角里添置冰糕棒、吸管供幼儿拼三角形,巩固认识其三角形。
教学反思:
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的`小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
三角形教学设计5
【教学内容】
探索活动(二)《三角形的面积》教材第25页——26页
【教学目标】
知识目标:①使学生经历、理解三角形面积公式的推导过程。
②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。
【教学重点】
理解三角形面积计算公式,正确计算三角形的面积 理
【教学难点】
理解三角形面积公式的推导过程。
【课前准备】
三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。
教师准备多媒体课件一份、演示教具一套
【教学进程】
一 复习引入
1、出示课件
师:比一比,下面两个图形哪个面积大?
生:观察 比较 说说你是怎么比较的
师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。
2、回顾平形四边形面积公式的推导
师:谁能告诉老师平形四边形面积公式推导过程
生答后,师课件演示
师:在这个过程,我们运用了一个什么数学思想。
生:转化
师板书:转化
师:现在,我们已经掌握了几种图形的面积公式了呢?
生答后,师简要小结
3、设疑,引入新课
小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识
师板书:三角形的面积
二、探究新知
1、知识猜想
师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?
生讨论、作答(可能和底、高有关)
2、动手实践
一组学生拿出直角三角形学具
二组拿出锐角三角形学具
三组拿出钝角三角形学具
四组拿出任意三角形学具
剪一剪、拼一拼,你能发现什么?
师巡回检查、指导
3、实践汇报
各组汇报实践结果
一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。
二组:两个完全一样的锐角三角形也可拼成一个平行四边形。
三组:两个完全一样的钝角三角形也可拼成一个平行四边形。
四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。
各组就实践汇报展开讨论。
4、演示总结
师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?
出示课件(演示1两个完全一样的三角形拼成平行四边形)
师引导生观察
(1)、拼成的平行四边形和原三角形面积有什么关系?
生:平行四边形面积是三角形面积的2倍。
(2)、平行四边形的底和高与三角形的哪些部分有关?
生:平行四边形的高等于三角形的高;
平行四边形的底等于三角形的底
师小结并板书
平等四边形的面积= 底 × 高
三角形的`面积= 底 × 高 ÷ 2
出示课件(演示2一个三角形剪拼成平行四边形)
师:观察平行四边形面积与原三角形面积有何关系?
生:相等
师:平行四边形的底和高与三角形底、高有什么关系?
生:平行四边形的底等于三角形的底
平行四边形的高等于三角形的高的一半
师小结并板书
平行四边形面积= 底 × 高
三角形面积= 底 × 高 ÷ 2
三角形的面积=底×高÷2
字母表示: S=ah÷2
5、师生一起回顾三角形面积公式的推导过程
6、基本练习
师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?
生:能
师:好那大家帮他算一算
生解答,师巡回检查
强调:1、注意运用公式 2、注意面积单位
三、巩固检测
1、出示课件
师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?
生答、师订正
师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?
生独立完成
师统一订正
2、出示课件
师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?
生板演 师讲解订正
四、回顾总结
师:学完这节课,你都有些什么收获呢?
生讨论、作答
师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。
附:【板书设计】
三角形的面积
平行四边形面积 = 底 × 高
转化
三角形面积= 底 × 高 ÷ 2
S= a×h÷2
三角形教学设计6
一、活动目标
1、引导幼儿认识三角形。
2、引导幼儿分辨出三角形的物品。
二、活动准备
1、三角形模型
2、三角形相关物品
3、三角形泡棉
4、幼儿操作卡
三、活动过程
1、情境导入:点心时间到了,小动物们都围在桌子旁边吃着点心。
请你们看看点心的形状都是不同的,你认识这些形状吗?
2、交流探索:引导幼儿认识三角形,分辨出三角形物品。
(1)教师带领幼儿进入认知环节,引导幼儿初步感知三角形。
(2)看,小老虎和小狗的点心形状是一样的,你知道这是什么形状的吗?
3、教师引导幼儿认识三角形的主要特征。
(1)教师出示三角形卡片和三角形的泡棉学具,引导幼儿说出三角形的主要特征。
(2)小朋友们,请仔细观察,说一说三角形是什么样的'?
(3)想一想,正方形和三角形有什么不同?
4、实践操作:引导幼儿操作卡片上内容。引导幼儿区分物品的形状,找出三角形物品。
5、小结总结:有三条边、三个角的封闭图形是三角形,我们身边还有很多三角形的物品,就像小红旗、衣架、屋顶等。
四、活动建议
引导幼儿自助操作练习卡,学习探索,找出拼合图形之中的三角形。
五、活动延伸
(1)引导幼儿从活动室、家里或者其他场所寻找三角形物品。
三角形教学设计7
活动目标
1、认识三角形的特征,知道三角形由3条边,三个角。
2、能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3、发展幼儿观察力,空间想象力。
活动准备
1、PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
活动过程
一、导入:手指游戏:快乐的小鱼二、学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)、引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的`,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)(3)引导幼儿在活动室里找一找三角形的物品3、、老师三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三、复习三角形的特征冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
活动反思
小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
三角形教学设计8
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的.认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
三角形教学设计9
教材分析
学生在一到三年级已经认识三角形,并懂得直角、锐角、钝角,在四年级学习了平角、直角。可见四年级的学生已经有一定的平面图形的知识,学习这一部分内容,对他们来说比较容易。教师可充分放手让学生自主探究,学生可以通过小组讨论以及量一量、分一分、剪一剪等实践活动来解决本节课的知识点。
学情分析
学生是学习的主人,学习是学生的“再创造”活动。学生通过小组合作、动手把图形分类,以明确三角形的不同形状,学生动手测量而获得等腰三角形、等边三角形的认识。也就是由学生本人把要学的东西自己去发现或创造出来。教师的`任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生,学生通过自己的创造活动而获得知识,才能真正掌握知识和灵活运用知识。
教学目标
(1)通过小组交流和合作讨论,识别直角三角形、锐角三角形、钝角三角形,等腰三角形和等边三角形。
(2)通过分类、观察的活动,以及折、叠、剪等操作,培养学生的发现意识。
教学重点和难点
掌握各种三角形的特征、特性,会按角、边给三角形进行分类。
三角形教学设计10
教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:
1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:
一、出示课题,复习旧知
1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知
1、通过预习,认识结论,提出疑问
2、验证三角形的内角和
(1)用“量一量、算一算”的方法进行验证
①汇报测量结果
②产生疑问:为什么结果不统一?
③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证
①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
③验证得出:三角形的内角和是180°。
(3)用“折一折”的方法进行验证
①指导折法。
①分别折:锐角三角形、直角三角形、钝角三角形。
③再次验证得出:三角形的内角和是180°。
3、看书质疑
【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的.转化。从而明确三角形的内角和是180°。
三、实践应用,解决问题:
1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。
2、求出三角形各个角的度数。(图略)
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是
70°,它的顶角是多少度?
4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)
5、数学游戏。
【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。
四、总结全课、延伸知识:
1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?
2、知识延伸:给学生介绍一种更科学的验证方法——转化。
【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。
板书设计: 三角形的内角和是180°
方法:①量一量 拼角(略)
②拼一拼
③折一折
【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。
三角形教学设计11
【活动目标】
1、教幼儿知道三角形和生活的名称和主要特征,知道三角形由3条边,三个角。
2、教幼儿把三角形和生活中常见实物进行比较,能找出和三角形相似的物体。
3、发展幼儿观察力,空间想象力。培养幼儿的动手操作能力。
4、体验数学集体游戏的快乐。
5、初步培养观察、比较和反应能力。
【活动准备】
1、大小尺寸不同的三角形6个。
2、图形组成的实物图片4张。
3、孩子人手3个三角形若干、
【活动过程】
一、复习3的数数
引领幼儿手口一致点数3的物体。
通过点的横排、竖排,及三点随意排的点数让幼儿手口一致的数数,并引出通过三点连线形成三角形。
二、学习三角形特征
1、引导幼儿观察比较图形,幼儿每人一个三角形。
通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、引导幼儿观察几个不同形状,不同大小的`三角形,通过验证得出三角形三条边,三个角;有三条边,三个角的图形都是三角形。
3、老师小结三角形特征,使幼儿获得的知识完整化。
三、复习巩固三角形的特征
1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。
请幼儿一一找出三角形,并说出为什么?
2、请幼儿从图形拼图中找出三角形,将图片一一出示。
请幼儿观察说出这些图象什么?
哪些部分是用三角形拼成的?用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
延伸活动:
在区角里添置冰糕棒、吸管供幼儿拼三角形,巩固认识其三角形。
教学反思:
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
三角形教学设计12
教学目标:
1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。
3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。
教学难点:
通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"
教师准备:
4组学具、课件
学生准备:
量角器、练习本
教学过程:
一、兴趣导入,揭示课题
1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"
(生出示三角形并汇报各类三角形及特点)
2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
3、我们来帮帮它们好吗?
4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。
你能标出三角形的三个角吗?(生快速标好)
数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)
"同学们,用什么方法能知道三角形的内角和?"
二、猜想验证,探究规律 (动手操作,探究新知)
1.量角求和法证明:
先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好?
(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。
(2)指名汇报各组度量和计算内角和的结果。
(3)观察:从大家量、算的结果中,你发现什么?
归纳:大家算出的三角形内角和都等于或接近180°。
(5)思考、讨论:
通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?
大家讨论讨论。
现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?
看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。
看老师最终把三个角拼成了一个什么角?平角。是多少角?
"180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3)
现在,我们可验证三角形的内角和是(180度)?
2、那么对任意三角形都是这个结论?请看大屏幕。
演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。)
你们想不想去试一试。
1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)
2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)
a、验证直角三角形的内角和
折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?
引导生归纳出:直角三角形的内角和是180°
折法2 我们还可以得出什么结论?
引导生归纳出:直角三角形中两个锐角的和是90°。
(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)
b、验证锐角、钝角三角形的内角和。
归纳:锐角、钝角三角形的内角和也是180°。
放手发动学生独立完成 ,逐一种类汇报 师给予鼓励
三、总结规律
刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的'方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应
四、应用新知,知识升华。
(让学生体验成功的喜悦)
现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?
(课件5……)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
有两个直角的一个三角形
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、做一做:
在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、
3、27页第3题(数学信息较为隐藏和生活中的实际问题)
4.思考题、
五、总结
今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。
板书设计:
三角形内角和
量一量 拼一拼 折一折
三角形内角和是180°
三角形教学设计13
一、教学目标
【知识与技能】
掌握三角??形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】
经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】
在探索归纳论证的`过程中,体会数学的严谨性,体验成功的快乐。
二、教学重难点
【教学重点】
“角角边”三角形全等的探究。
【教学难点】
将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程
(一)引入新课
利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)
(四)小结作业
提问:今天有什么收获?还有什么疑问?
课后作业:书后相关练习题。
三角形教学设计14
设计说明:本课的教学内容是人教版三年制初二几何5.4节三角形相似的判定。
在充分理解教材的基础上,本节课首先在新旧知识的转折处创设有助于学生自主学习的问题情境,引导学生通过探索、交流,获得知识,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。其次,根据变式分层的思想设计具有一定跨度的问题串,组织学生进行变式训练,有效地实施分层次教学,使每个学生都得到充分的发展。
1 教学目标
1.了解三角形相似的判定定理1的证明思路和方法, 能运用判定定理1解决有关问题;
2.掌握直角三角形被斜边上的高分成的两个直角三角形彼此相似并且都和原三角形相似;
3.学会与人合作,能与他人交流思维的过程和结果;形成评价与反思的意识;
4.能积极参与数学学习活动,体验数学活动充满着探索与创造,形成实事求是的态度以及独立思考的习惯。
2 教学重点和难点
重点是三角形相似的判定定理1及其应用, 难点是定理的证明方法。突破难点的关键是在于使用化归、全等变换、类比等数学思想方法。
3 教学、学法
本课采用“自主探索,合作交流”这一教学组织形式,首先从问题1入手,利用图形变换的对比手法,引导学生步步深入, 类比归纳出判定两个三角形相似的条件;然后通过一组变式题,保证学生在基础知识和基本技能的获得与一定的训练的同时,能感受到数学创造的乐趣,获得对数学较为全面的体验与理解。
4 教学过程
4.1 创设问题情景,引导学生探索导出新知识
4.1.1 问题讨论 显示问题1和问题2,组织学生分小组讨论。
问题1:如图1,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。
利用电脑课件改变DE的位置,保持∠1=∠B,得到问题2。
问题2:如图2,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。
4.1.2 小组交流与同学交流自己的想法。
鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的'想法,感受到与同伴交流中获益的快乐。
教师积极引导学生利用化归的思想解决问题,在学生充分讨论的基础上,对问题解决的方法小结如下:
(1)利用同位角相等,两直线平行(∠1=∠B,DE∥BC )将问题1化归到上节所学的定理;
(2)通过全等变换,将问题2化归到问题1;
电脑三维动画显示:将△ADE绕着∠A的平分线旋转180°(即将△ADE翻一面)可得到△AD′E′,(如图3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因为∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。
(3)学生代表口述交流问题2证明的思路,教师板书证明过程;
(4)这里由特殊到一般来探索数学规律, 是数学研究中常用的一种思想方法。
4、导出定理:我们知道三角形全等是三角形相似的特殊情况, 在上述学习的基础上,你能否类似于三角形全等用符合某种条件来判定两个三角形相似?
学生口述三角形相似判定定理1,教师板书。
(二)变式训练,引导学生应用新知识和进行创新性学习。
1.显示习题1、习题2,供学生独立思考后回答。
习题1如图4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于点D,请找出图中的相似三角形。
习题2如图5,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D, 找出图中所有的相似三角形。
2.教师归纳小结:
(1)习题1利用简单计算,直接运用判定定理1便可找出△ABC~△BDC;
(2)习题2与习题1的解题方法一样,但要求全面观察图形, 图中共有三对三角形相似,即直角三角形被斜边上的高分成的两个直角三角形相似。
3.电脑显示习题3,学生独立练习后,小组交流,教师归纳小结。
习题3如图6,在△ABC中,点D为AC边上的一点,连结BD, 问∠ADB满足什么条件时,△ADB~△ABC。
4.电脑显示将图6中的△ADB绕点A旋转一定的角度,得到习题4。
习题4 如图7,已知∠D′=∠B,∠1=∠2,求证:△AD′B′~△ABC。
5.让学生在习题4的基础上改编一道变式题,课后交流。
这个问题的参与性较强,每个学生都可以展开想象的翅膀,按照自己思考的设计原则,编拟题目(如改变条件:将∠D′=∠B改成∠B′=∠C,结论不变;也可以将图形不变;也可以将图形变为如图8所示),感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。
(三)师生共同作本节果小结。
作者介绍:郑碧星,福建德化第一中学
三角形教学设计15
一、教学目标
1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
重点:掌握三角形内角和定理。
难点:理解三角形内角和定理推理的过程。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。
【新授】
活动一:
那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。
老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!
活动二:
那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?
那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。
老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。
好时间到,哪位同学来告诉一下老师,你们的讨论结果呢。你们小组讨论的最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?
看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的.内角和就是180度。
观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。
【巩固练习】
通过本节课的学习,相信大家对平行四边形有了更深的了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。
【课堂小结】
不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!
【作业布置】
接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。
【三角形教学设计】相关文章:
三角形教学设计06-12
三角形教学设计12-19
三角形的教学设计11-25
三角形的边教学设计09-14
三角形分类教学设计08-31
《三角形的认识》教学设计08-01
《三角形的特性》教学设计07-24
三角形的分类教学设计07-24
《三角形的面积》教学设计07-30
《三角形的分类》教学设计06-17