比应用教学设计

时间:2023-05-08 10:30:55 教学设计 我要投稿

比应用教学设计15篇

  作为一位无私奉献的人民教师,通常会被要求编写教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?以下是小编帮大家整理的比应用教学设计,仅供参考,希望能够帮助到大家。

比应用教学设计15篇

比应用教学设计1

  【教学内容】:人教版小学数学一年级上册第47页内容。

  【教学目标】:

  1、认知目标:使学生认识并理解大括号和问号的意义,能借助图画正确分析题意。

  2、技能目标:会用6的加法解决生活中的简单问题,初步感受数学与日常生活的密切联系,体验学数学用数学的乐趣。

  3、情感目标:通过本节课教学,向学生渗透热爱大自然、保护环境等方面的教育,从而促进学生的健康发展。

  【教学重、难点】:

  重点:用6的加法解决生活中的实际问题。

  难点:让学生学会观察、分析,能提出合适的数学问题,正确理解大括号和问号的意义。

  【教学准备】:卡片智慧星贴画(板书用)

  【教学过程】:

  一、创设情境,生成问题。。

  1、同学们,你知道现在是什么季节吗?(秋天)对,是秋天,秋姑娘呀,正忙着给勤劳的人们送去丰收和喜悦呢!美丽的秋姑娘也给咱们每个小组送来了一份礼物呢?(出示水果图形算式卡片,算式的数分别和小组数相符)大家能根据算式猜一猜,这些礼物各属于哪个小组吗?

  【设计意图:激发学生兴趣,复习6的加减法运算,为后面的学习应用做铺垫】

  2、师:刚才我们解决了这些问题,都用到了哪些知识呢?(生齐:6的加减法)

  师:利用这些知识,还可以解决哪些问题呢?好,现在咱们还是随秋姑娘一起去大自然中转一转,看一看吧!(出示插图,导入新课)

  二、探索交流,解决问题。

  1、请同学们仔细观察图画,把看到的内容和同桌互相说一说。

  【设计意图:培养学生初步的自主学习和小组合作的意识。】

  2、继续观察图画,把你看到的内容和发现的问题在小组内交流,组长把解决不了的问题做好记录,然后师生共同解决。

  【设计意图:在相互交流中,给每位学生提供了锻炼语言表达能力的机会,同时做到知识共享,这观察、交流的过程,本身就是学生感悟体验的过程,可以使学生从中感悟到自然美、家乡美,进而激发起热爱自然、热爱家乡的思想感情。】

  3、各小组代表分别说出本组的疑难问题。对这些问题,先由学生解决,教师做适当补充讲解。

  4、教学大括号和问号:

  ①师:图中还有哪些你以前没见过的数学符号?你知道它们代表什么意思吗?

  【设计意图:有选择的解决实际问题。】

  ②找几名同学结合图画内容试着说说看。

  【设计意图:让学生大胆猜想,尝试解决问题,体验独立解决问题的过程,同时享受成功的喜悦。】

  ③师解释并验证学生的猜想:大括号表示把两部分合起来,问号表示要求的'问题。接着出示几种开口方向不同的大括号,引导学生理解大括号和问号合在一起表示的意义。

  5、看图完成算式:

  引导学生分析第一幅插图

  秋天到了,同学们走出校园,来到美丽的田野,准备捕捉几只昆虫做标本。画面上有几位同学正在捕捉蝴蝶?(生:4位)又来了几位同学?(生:2位)

  我们要解决的问题是:画面上一共有几位同学呢?

  学生独立完成图画下面的算式。然后指名回答,师板书:4+2=6

  师问:根据这幅图画,你还可以提出哪些问题?

  生1:图中有4个女生,2个男生,一共有几个同学?

  生2:扎小辫的有3人,不扎辫子的有3人,一共有几人?

  生答师板书:3+3=6

  【设计意图:深挖教材,引导学生多角度分析问题,提倡算式多样化。】

  引导学生分析第二幅图画

  引导学生把第一幅图和第二幅图进行比较,发现不同之处,自己去表述图意,如有困难,可小组内交流。

  三、巩固应用,内化提高。

  学生独立完成“做一做”,然后说一说自己“想”的过程。

  学生完成教材51页第13题:以小组为单位,让学生对着图画进行讲故事比赛,老师适当进行爱护动物,保护生态环境的教育,故事内容分别为:

  图1:《天鹅湖》

  图2:《小青蛙比本领》

  图3:《小金鱼找朋友》

  对优胜小组,每人奖励智慧星一颗。

  【设计意图:巩固所学知识,同时教育学生保护生态环境,热爱大自然,通过奖励,鼓励学生积极参与课堂活动。】

  四、回顾整理,反思提升。

  师:通过今天的学习,你收获了什么?

  生:我认识了“大括号”,并且知道了它的意义,还学会了根据问号的位置来确定列式方法,同时还学会了从生活中发现数学问题。

  师:生活中处处有数学,希望你平时要留心观察,看周围还有哪些地方也隐藏着数学问题,比一比,看一看,做一个爱数学的小博士!

  【板书设计】6和7的加减法的应用

  (金色的秋天)贴画1贴画3

  4+2=67-3=4

  贴画2贴画4

  3+3=67-4=3

  教后反思:

  本节课是在学习了1-5的加减法和6的组成的基础上,学习6的加法。在教学设计时以以美丽的秋天的情境引入,在情境中提出问题,发现问题,学习6的加减法。教学时我让学生充分动手操作,在写一写,说一说的环节中引导学生用3句话说说图的意思,为学习应用题做好铺垫。

比应用教学设计2

  课题:

  分数的简单应用

  科目:

  数学

  教学对象:

  三年级

  课时:

  2课时

  教学内容分析:

  本节课是在学生初步认识了分数之后,学习用分数解决一些简单的实际问题,主要先让学生了解把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示,加深学生对分数含义的理解,学会用简单分数描述一些简单的生活现象;接着通过直观操作与已经掌握的分数含义相结合解决简单的实际问题,培养了学生解决问题的能力,发展抽象概括和类比推理能力,发展学生的数感。让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动的经验。

  教学目标:

  1、通过说一说,分一分,画一画等数学活动,让学生经历“整体”由“1个”到“多个”的过程,指导把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  2、借助解决具体问题的活动,使学生能运用分数的相关知识,描述一些生活现象;发展抽象概括和类比推理能力,发展学生的数感。

  3、让学生在具体情境中探究分数,体验学习数学的乐趣,积累数学活动经验。

  学习者特征分析:

  1、学生是9-10岁的儿童,思维活跃,课堂上喜欢表现自己,对数学学习有浓厚的兴趣;

  2、学生在学习中随意性非常明显,渴望得到教师或同学的赞许;

  3、学生在平常的生活当中有“自己的事情自己做”的经历和体验,比如自己整理书包、系红领巾等;

  4、学生已对数学有一定的认识和了解,对分数有了一定的认识;

  5、学生已经学习了分数的简单计算;

  6、学生对于分数有了自己的理解,对于整体和平均分有了一定的认识和理解,知道了一个整体的平均分,用分数表示和计算。

  教学策略选择与设计:

  在教学中,首先我通过让学生对比发现一个正方形和4个正方形的区别和联系,循序渐进地让学生体会“1”是一些物体时,如何用分数表示整体与部分关系,初步形成认识:与“1”是一个物体是相同的,平均分成几份分母就是几,取其中的几份分子就是几,取几份就有几个1份那么多。

  接着,出示苹果图,让学生进一步巩固把多个物体看成一个整体的数学思维,并且让学生自己动手画一画,分一分,亲身经历“整体”由“1个”到“多个”的过程。在分苹果的过程中,有意识地进行拓展,让学生了解到“总数一样,平均分的份数不一样,每一份所用的分数表示也不一样”和“总数不一样,平均分的份数一样,每一份的数量也不一样”,培养学生的逻辑思维能力。

  在整节课教学中,注重让学生用数学语言描述动作过程和结果,通过语言描述可以将学生的思维过程外显,加深对分数含义的理解。

  教学重点:

  知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  教学难点:

  从份数的角度理解“部分”与“整体”的关系和平均分。

  教学过程:

  一、创设情景,揭示课题

  谈话:让学生举例说分数及表示的意思,比较分数的大小,做几道分数的加减法的题,复习分数加减的规律。

  小结:把一个物体平均分成几份,分母就是几,取其中的几份,分子就是几。

  师:这节课,我们继续学习分数。

  二、探究体验,经历过程

  1、初步感知整体由“1个”变成“多个”。

  (1)黑板出示例1(1)左侧的内容

  ①让学生用分数表示涂色部分并说说4/1表示什么意思。

  ②如果涂色部分有2份呢?用分数怎么表示?3份呢? (2)课件出示例1(1)右侧的内容,动态演示剪的过程。 ①课件演示将一个正方形平均分成了4个正方形。

  问:涂色部分是其中的几份?这样的一份还能用分数表示吗?

  ②这样的2份是4个正方形的几分之几呢,3份呢?

  ③对比两个4/1,它们所表示的意思是否一样?

  小结:不仅可以把一个正方形平均分,还可以把4个正方形看成一个整体平均分。其中的1份都能用4/1表示。

  2、从份数角度理解部分与整体的关系

  课件出示第100页例1(2)的内容,动态演示平均分的过程。(有6个苹果,平均分成了3份)

  ① 其中的1份是苹果总数的几分之几?你能说说这个1/3表示的意思吗?你是怎么知道每一份用1/3表示的?

  ②1份是苹果总数的1/3,2份是苹果总数的几分之几呢?3份呢?

  3、自主探索,加深认识

  出示学具(苹果图),还可以怎么分?

  (1)学生独立思考,自主探索

  (2)学生展示,汇报交流

  (3)对比提升,为什么同样是一份,却用不同的份数表示? (平均分的份数不一样)

  4、比较辨析,提升认识 出示课件

  ①你能用分数表示其中的一份吗?

  ②为什么都能用1/3表示?(都是把苹果平均分成了3份,取其中的1份?)

  ② 每一份各有多少个苹果呢?(2个、3个、4个)

  ④为什么同样都是1/3,每一份的数量却不一样? (苹果的总数不同,所以每一份的数量也不同)

  三、巩固练习,深入理解

  1、完成教材第100页“做一做”的第1题。重点让学生说说分数表示的意义。

  2、完成教材第100页“做一做”的第2题。 学生独立完成后,集体交流。 (将9个△平均分成了几份?每1份有几个△,2份呢?)

  3、完成教材第100页“做一做”的`第3题。 同桌合作学习,动手摆一摆,并说一说想的过程。 (把这个10根小棒平均分成5份,其中的1份是2根,2份就是4根。)

  4、完成教材第102页练习二十二第2题。学生独立完成,集体交流,让学生结合图说一说分数表示的意义。

  四、课堂小结 这节课你有什么收获?

  教学评价设计:吕家岘小学办公室主任对我的这节课作如下评价: 首先白丽老师作为一名刚刚走上工作岗位的新教师,在第一次公开课上能达到这个教学水平还是不错的,当然除了优点以外,还存在一些不足之处,比如整个课堂气氛的创造上还不够,还要进一步下功夫,另外课堂的把握上也还存在一些问题,希望在以后的教学过程中多向有经验的老教师学习,多听老教师的课。 板书设计: 分数的简单应用

  6个苹果平均分成3份, 1份是苹果总数的 2份是苹果总数的

  12÷3=4(人) 12÷3=4(人) 4×2=8(人)

  答:女生有4人,男生有8人。

  教学反思:分数的简单应用是在学生学习了分数的认识、比较分数的大小和分数计算的基础上而解决实际问题的内容。这节课从学生的认知规律出发,符合三年级学生的年龄特点。教师应该认真分析教材内容,把分数的意义、分数的计算和解决问题融为一体。把解决问题的方法潜移默化的渗透给学生。

  1、激发兴趣,主动探究。

  学生有了兴趣就会产生强烈的求知欲望,就能积极主动地参与活动,成为学习的主体。教师应该抓住小学生好动的特点,充分利用操作材料,组织学生动手操作,通过摆一摆、画一画、算一算、说一说等活动,促使学生耳、口、手、脑等各种感官并用。教师参与到学生当中引导学生由浅入深逐步探究,营造了宽松和谐的学习氛围,激发了学生学习兴趣。

  2、问题引导,落实目标。

  紧紧围绕教学目标设计教学活动,教学中教师把学生当作研究者、发现者。课堂上教师以问题为引导,让学生自由地思考探究、操作交流。学生亲身经历数学知识的形成过程,经历知识从形象到表象再到抽象的过程。从中体验解决问题的思想和方法。例如:三分之一是女生,三分之一表示什么意思?三分之二是男生,三分之二是什么意思?进一步理解分数的意义。再如:请你用自己喜欢的方式求出男、女生的人数,再以小组为单位和小组同学说一说你是怎么想的?通过交流的过程学生将图形、语言、算式三种表征进行有机结合,在解决问题的同时加深了对分数的理解。

  3、大胆放手,能力培养。

  《数学课程标准》强调:“要鼓励学生独立思考、自主探究,为学生提供积极思考与合作交流的空间。”本节课教师充分利用学生已有的知识经验,给学生提供自主学习和合作交流两种学习方式。给予了学生自己操作、主动探究的空间,学生真正的成为了学习的主人,真正的掌握了学习的主动权,真正把课堂还给了学生。学生在小组合作讨论、全体汇报交流时,思维相互碰撞,智慧相互启迪,有的学生用小棒摆一摆,有的学生画一画,有的学生用算式计算,且算法多样。达到不同学生之间的资源共享,优势互补的目的,既培养了学生的合作意识,又培养了学生的探究能力。学生体验到成功的喜悦。

  4、本节课抓住了学生的身边生活去学习数学,应用数学。把教材的内容与现实紧密结合起来,符合学生的认知特点。同时也消除了学生对数学的陌生感。

  通过本节课也看到了自己需要努力的方向。譬如时间安排前松后紧,有一点拖堂;教师语言还不够精炼,上下衔接不流畅。但今后的教育道路还很长,我会不断努力,每一节课都会与我的学生共同成长。

比应用教学设计3

  教学内容:

  教科书第8页的例4、练一练、练习三的第1~4题。

  教学目标:

  1.使学生联系百分数的意义认识“折扣”的含义,体会以及折扣和分数、百分数的关系,加深对查分数的数量关系的理解;

  2.了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”的题型,能应用这些知识解决一些简单的实际问题。;

  3.进一步感受数学和人民生产、生活的密切关系,体会到数学的价值。

  教学重点:理解现价、原价、折扣三量关系;培养学生综合运用所学知识解决问题。

  教学难点:通过实践活动培养学生与日常生活的密切联系,体会到数学的应用价值。

  设计理念:数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

  一、开门见山,

  1.教学例4,认识折扣

  谈话:我们在购物时,常常在商店里遇到把商品打折出售的情况。

  出示教材例4的场景图,让学生说说从图中获得了哪些信息。

  提问:你知道“所有图书一律打八折销售”是什么意思吗?

  在学生回答的基础上指出:把商品减价出售,通常称作“打折”。打“八折”就是按原价的80%出售,打“八三折”就是按原价的83%出售。

  强调:原价是单位“1”,原价×折扣=现价,区别降价多少元。

  学生观察场景图。

  二、探索解法

  1.提出例4中的问题:《趣味数学》原价多少元?

  启发:图中的小朋友花几元买了一本《趣味数学》?这里的12元是《趣味数学》的现价还是原价?在这道题中,一本书的.现价与原价有什么关系?

  追问:“现价是原价的80%”,这个条件中的80%是哪两个量比较的结果?比较时要以哪个量作为单位“1”?这本书的原价知道吗?你打算怎样解答这个问题?

  进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?

  教师根据学生的回答板书:

  原价×80%=实际售价

  提出要求:你会根据这个相等关系列出方程吗?

  请学生到黑板上板演。

  2.引导检验,沟通联系:算出的结果是不是正确?

  启以学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用15元乘以80%,看结果是不是12元。

  学生讨论。

  学生先说出自己的想法。

  学生在小组里相互说一说,再在全班交流。

  学生尝试列出方程。

  学生独立验算,再交流检验的方法。

  三、巩固练习”先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。

  学生解答后再解读方程:你是怎样列方程的?列方程时依据了怎样的数量关系?你又是怎样检验的?学生小组内交流。

  学生列方程解答。

  四、拓展提高1.做练习三的第1题

  学生读题后,先要求学生说出每种商品打折的含义,再让学生各自解答。

  学生解答后追问:根据原价和相应的折扣求实际售价时,可以怎样想?

  2.做练习三的第2题。

  先学生独立解答,再对学生解答的情况加以点评。

  3.做练习三的第3题。

  先在小组里相互说一说,再指名学生回答。

  4.做练习三的第4题。

  先让学生独立解答,再指名说说思考过程。

  学生先相互说一说,再列式解答。

  学生独立解答,集体订正。

  学生小组交流。

  学生独立解答。

  五、全课小结本节课你有什么收获?商品的原价、现价、折扣之间有什么关系?

  六、布置作业课后抽时间到附近的商场或超市去看一看,收集一些有关商品打折的信息,并自己计算商品的现价或原价。

比应用教学设计4

  教学内容:

  人教版实验教材第十一册第49页。

  教材分析:

  这部分内容是在学生学过比、分数乘法意义以及分数乘除应用题之后安排的,既加强知识间的内在联系,又为后面的学习奠定了基础。

  学生分析:

  按比例分配问题是把一个数量按照一定的比进行分配。按比例分配问题有多种不同解法。现在小学教材中一般都采用把比转化为分数用分数知识来解答。因为学生对理解比和分数的关系比较了解,对分数应用题有了一定的基础,所以学习起来应该比较容易。所以本节课的重点应放在如何把比的问题转化为分数问题来解决。何如解决生活中的按比分配问题。

  教学目标:

  1.知识与技能:使学生理解按比例分配的意义,掌握按比分配的思想,形成按比分配的能力。

  2.过程与方法:在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。培养学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。

  3.情感态度价值观:重视学生数学探索按比分配问题的活动经验的积累。培养学生自主、探究、合作的意识和了解家乡,热爱家乡,喜欢数学的情感。

  教学重点:掌握按比分配应用题的结构特点和解题思路。

  教学难点:正确分析,灵活解决按比分配的各种类型的实际问题。

  教学方法:引导、探究、尝试发现法。

  学法指导:自主探究与合作交流有机结合。

  教具:多媒体

  教学过程:

  一、创设教学情境

  1.听着歌曲《秦岭最美是商洛》,欣赏商州莲湖公园的图片。

  2.莲湖公园这么美,那你对莲湖公园了解多少呢?新建的莲湖公园水域面积有多少亩?绿化面积有多少亩呢?

  【设计意图】通过学生听音乐、赏美景、猜地点,吸引学生的注意力,激发学生了解家乡、热爱家乡、为建设家乡而发奋学习的激情。使学生感悟到数学来源生活,学数学是为了更好地生活!

  二、实施教学

  1.出示例1.扩建后的莲湖公园绿化面积和水域面积共165亩,绿化面积和水域面积的比是1:2.

  (1)从这句话中你能获得什么信息呢?

  (2)你能提出什么问题?

  (3)讨论提示

  ①绿化与水域总面积被平均分成几份?每份是多少?各占几份?

  ②绿化面积占它们总面积的几分之几?水域面积呢?

  (4)展示学生的四种做法

  ①先算每一份,再按各部分的'份数算。

  ②先算各部分占全部得分率,再按分数乘法应用题算。

  ③先算全部是各部分的几分之几,再按分数除法应用题算。

  ④列方程计算。

  (5)让学生比较哪种方法较好。

  2.展示课题《比的应用》

  【设计意图】首先对教材进行了整合。这里我用孩子们熟悉的,感兴趣的题材呈现“按比分配”的知识点,舍弃了教材原有的题材。其次,在呈现的过程中,培养了学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。再次,是重视了对课堂生成的有效引导和巧妙运用。既重视了学生的创新意识的培养,有对算法进行了优化。

  3.知识运用:例题变形

  扩建后莲湖公园总面积220亩,其中未绿化的陆地面积、绿化面积和水域面积的比是1:1:2.问未绿化的陆地面积、绿化面积和水域面积各是多少亩?

  4.学以致用:医用酒精是用蒸馏水和纯酒精按1:3配制而成。

  ①若有200ml蒸馏水,需要多少毫升纯酒精恰好能配制成符合要求的医用酒精?

  ②若有1200ml纯酒精,有足够的蒸馏水能配制成多少毫升符合要求的医用酒精?

  【设计意图】重视孩子对知识灵活迁移运用能力的培养。

  5.我是小法官:判断正误并说明理由。

  (1)学校把栽300棵树的任务分配给六年级三个班,三个班的人数分别是46人、54人和50人。最合理的分配方案是每班栽100棵树。()

  (2)有一些苹果分给幼儿园得小朋友们,大班分得二分之一,中班分得三分之一,小班分得六分之一。大中小班分得苹果的数量之比是

  即3:2:1()。

  【设计意图】首先,让学生知道平均分是按比分配的一种特殊形式。其次,为拓展运用清障护航。

  6.拓展运用

  有一位老人,他有三个儿子和17匹马。在他临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。”老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“我把17匹马全都留给我的三个儿子。长子得一半,次子得三分之一,幼子得九分之一。不许杀马,不许流血。你们必须遵从父亲的遗嘱。”

  温馨提示:三个儿子分得马的数量之比是几比几比几?化成最简整数比结果是几比几比几?

  【设计意图】让学生了解古代趣题中折射出的按比分配原理。

  三、谈谈你这节课的收获?

  (1)解决“按比分配”型实际问题的方法

  ①、求出各部分之间的数量比,由各部分之间的数量比可得出各部分占总体的分率。

  ②、用分数乘法求出各部分的量分别是多少。

  (2)我对新建后的莲湖公园有了更多的了解。

  四、布置作业

  必做题:课本55第4题;

  选做题:课本56页第7题;

  思考题:课本56页第11题。

比应用教学设计5

  教学内容:

  人教版六年级数学上册第54页例2和练习十二第1~4题。

  教学目标:

  1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

  2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

  3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

  教学重点:

  运用按比分配的知识解决生活中的实际问题。

  教学难点:

  提高分析问题与解决问题的能力。

  教学过程:

  一、情景导入。

  如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。

  板书:比的应用。

  二、探索新知。

  请同学们打开教科书的54页。

  出示教材54页例2

  阅读与理解:

  (1)、了解情境中的生活信息。

  (2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。

  分析与解答:

  (1)、稀释液:500ml 总分数:1+ 4=5

  1 : 4表示什么意思呢?

  浓缩液 : 水

  (2)、浓缩液和水的体积比是1: 4 。

  浓缩液的体积是稀释液的1/5。

  水的体积是稀释液的4/5。

  方法一:

  总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

  把每份是:500(1+4)=100(mL)

  浓缩液:1001=100(mL)

  水:1004=400(mL)

  方法二:

  先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。

  浓缩液有:5001/5=100(mL)

  水有:5004/5=400(mL)

  回顾与反思:

  浓缩液体积:水的体积

  =( ):( )

  =( ):( )

  答:浓缩液有100mL,水的体积有400mL。

  三、巩固练习

  练习十二第1、2题。

  四、小结:

  1、今天我们应用比解决了一些实际问题。你有什么收获?

  2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。

  五、作业:

  练习十二第3、4题。

  六、板书设计:

  比的应用

  方法一 方法二

  总分数1+4=5

  每份数: 500(1+4)=100(mL) 浓缩液占总体积的.1/5

  水占总体积的4/5

  浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)

  答:浓缩液有100mL,水的体积有400mL。

  课后反思:

  按比的配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。

比应用教学设计6

  教学目标

  1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。

  2。会联系加减法的含义解答有图有文字的一步计算应用题。

  3。培养初步的分析、判断和推理能力。

  教学重点

  有图有文字应用题的解答。

  教学难点

  解答有图有文字的减法应用题。

  教具学具准备

  教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。

  学生准备教科书第88页数学游戏的口算卡片和得数卡片。

  教学步骤

  一、铺垫孕伏。

  6+2=9+4=9+9=

  9+3=3+5=4+6=

  9+7=9+6=9+5=

  2+7=9+2=9+8=

  统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。

  二、探究新知。

  1、导入。

  (1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。

  师:图中先告诉我们什么?又告诉我们什么?

  引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。

  师:求一共是多少只该怎样算呢?

  引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。

  教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。

  (2)揭示课题。

  像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。

  2、教学例5左边的加法应用题。

  (1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?

  引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?

  教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。

  (2)求一共是多少只怎样计算呢?

  引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9

  (3)让学生把教科书第88页例5左题的算式补充完整。

  (4)反馈练习。

  完成“做一做”左边的加法题(小兔图)。

  先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。

  3、教学例5右边的减法应用题。

  (1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状。看图,你知道了什么?怎样计算?

  引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6

  (2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题。

  让学生自由读一读题,找出题中的两个已知条件和1个问题。

  引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的'。问题是:还剩几个?也是用文字叙述的。

  师:求还剩几个应该怎样想,怎样列式呢?

  引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6

  (3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。

  (4)反馈练习。

  完成“做一做”右边的题(汽车图)。

  先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的空。订正时提问:为什么用减法算?

  4、集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?

  引导学生汇报:

  相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。

  不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。

  5、看书,质疑。

  三、课堂小结。

  今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。

  四、随堂练习。

  1、练习十九第1题(图片:练习3)。

  先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。

  2、比比看哪组先夺得红旗(图片:练习4)。

  把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。

  3、游戏“你争我抢”【详见探究活动】。

  布置作业

  (投影片出示)

  让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。

  板书设计

  应用题

  教案点评:

  教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。

比应用教学设计7

  本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。

  本节课素质教育目标

  (一)知识教学点

  1、初步学会列方程解比较容易的两步应用题。

  2、知道列方程解应用题的关键是找应用题中相等的数量关系。

  (二)能力训练点

  1、使学生能用方程的方法解较简单的两步计算应用题。

  2、引导学生能根据解题过程总结列方程解应用题的一般步骤。

  3、能独立用列方程的方法解答此类应用题。

  (三)德育渗透点

  1、培养学生用不同的方法解决问题的思维方式。

  2、渗透在多种方法中选择最简单的方法解决问题。

  教学重点:列方程解应用题的方法步骤。

  教学难点:根据题意分析数量间的相等关系。

  要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法——用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。

  学解应用题工程问题思路指点

  工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。它们的基本关系式是:工作总量÷工作效率=工作时间。

  工程问题是小学分数应用题中的一个重点,也是一个难点。下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。

  例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?

  [思路说明]①把这项工程的工作总量看作“1”。甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。甲、乙两队共同修建1天,完成这项工程的'1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。

  1÷(1/12+1/20)=1÷2/15=15/2(天)

  ②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。用工作总量除以两队合建一天的工作量,就是两队合建的天数。

  60÷(60÷12+60÷20)=60÷(5+3)

  =60÷8=15/2(天)

  评点这是一道工程问题的基本题,也是工程问题中常见的题型。上面列举的两种解题方法,前者比较简便。这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。工程问题一般采用这种方法求解。

  练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?

  例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?

  [思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。

  1÷(1/8+1/10)×3/4

  =1÷9/40×3/4=10/3(天)

  ②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。

  3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)

  评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。两种思路简捷、清晰,都是很好的解法。

  练习:一项工程,单独完成,甲队需8天,乙队需12天。两队合干了一段时间后,还剩这项工程的1/6没完成。问甲、乙两队合干了几天?

  例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。两人同时出发,相向而行,几小时才能相遇?

  [思路说明]①由甲2小时行全程的1/3。可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。

  综合算式:

  1÷(1/(2÷1/3)+1/(2÷1/2))

  =1÷(1/6+1/4)=1÷5/12=12/5(小时)

  ②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。

  综合算式:

  1÷(1/3÷2+1/2÷2)

  =1÷(1/6+1/4)=1÷5/12=12/5(小时)

  评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。

  练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?

  例4一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?

  [思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。

  1÷(1/6-1/18)=1÷1/9=9(天)

  评点这是一道较复杂的工程问题,是工程问题的主要题型之一。主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

  有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

  练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?

  例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?

  [思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

  加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

  综合算式:

  [1-(1/10+1/15)×5]÷1/12

  =[1-1/6×5]÷1/12

  =1/6÷1/12=2(天)

  评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.

  练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?

  例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?

  [思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

  综合算式:

  1÷[1/6-(1-1/6×2)÷8]

  =1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]

  =1÷[1/6-1/12]=1÷1/12=12(天)

  评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

  练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?

比应用教学设计8

  教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。

  教学目的:

  1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。

  2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。

  教学重点:进一步掌握分数应用题的结构特征和解题规律。

  教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。

  教具准备:投影仪

  教学过程:

  一、梳理知识,使知识建成网状结构

  1、口答:(打开投影仪)

  (1)分数应用题的基本类型有几种?哪三种?

  (2)解答这三种分数应用题的关键是什么?

  (找准单位"1",弄清单位"1"的量、分率及分率对应量。)

  (3)解答这三类分数应用题的基本关系式是什么?

  2、(l)简单的分数应用题

  ①某班有男生40人,女生人数是男生1/4,女生有多少人?

  ②某班有女生10人,男生40人,女生人数是男生人数的几分之几?

  ③某班有女生10人,是男生人数的士,男生有多少人?

  (2)稍复杂的分数应用题

  ①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?

  ②某班有男生40人,女生30人,男生人数比女生人数多几分之几?

  ③某班有女生30人,比男生人数少言,男生有多少人?

  以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:

  ①求一个数的几分之几是多少?

  单位"1"的量×分率=分率对应量

  ②求一个数是另一个数的几分之几是多少?

  分率对应量÷单位"1"的量=分率

  ③已知一个数的几分之几是多少,求这个数?

  分率对应量÷分率=单位"1"的量

  而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。

  [评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的思维条理化,进一步理清了学生的解题思路。]

  二、抓住结构特征,应用所学知识,提高能力。

  (1)某用户三月份用电100度,四月份比三月份节约用电1/10,?

  ①100×1/10?

  ②100×(1—1/10)?

  ③100×(1—1/10+1)?

  (2)某用户四月份比三月份节约用电100度,正好节约了1/10,

  ①100÷1/10?

  ②100÷1/10×(1—1/10)?

  ③100÷1/10×2—100?

  (3)某用户四月份用电90度,比三月份节约用电1/10,?

  ①90÷(1—1/10)?

  ②90÷(1—1/10)×1/10______________?

  ③90÷(1—1/10)+90________________?

  (学生口述,集体订正,比较异同)

  2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)

  __________运来的桔子比苹果少,___________?

  (1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?

  (2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?

  (3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?

  (4)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果比桔子多多少吨?

  (5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?

  (6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?

  (7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?

  (9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?

  (12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?

  (13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?

  (14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

  (15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?

  (16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?

  (18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?

  (19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

  (20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?

  以上各题采用先让学生试做,然后老师归纳总结解题思路:

  ①先找出单位"1"的量

  ②谁和单位"1"的.量相比

  ③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)

  ④确定算法(或列式)的依据是什么?

  3、发展题(用幻灯逐题打出)

  (1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?

  (2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?

  教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。

  通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。

  三、课堂小结,再次构成学生的认知结构。

  师问:这节课你有哪些收获?

  甲生答:这节课我们复习了分数应用题的基本类型。

  乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。

  丙生答:根据分数应用题的基本关系式确定算法。

  丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。

比应用教学设计9

  教学目标具体要求:

  1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

  2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

  3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

  重点:

  勾股定理的应用

  难点:

  勾股定理的应用

  教案设计

  一、知识点讲解

  知识点1:(已知两边求第三边)

  1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

  2.已知直角三角形的两边长为3、4,则另一条边长是______________。

  3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?

  知识点2:

  利用方程求线段长

  1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,

  (1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?

  (2)DE与CE的位置关系

  (3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?

  利用方程解决翻折问题

  2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?

  3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

  4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少?

  5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。

  6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式.

  知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系

  1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。

  (2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。

  (3)在ABC中,a:b:c=1:1:,那么ABC的确切形状是_____________。

  2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明∠AFE是直角吗?

  变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明∠AFE是直角吗?

  3.一位同学向西南走40米后,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了

  二、课堂小结

  谈一谈你这节课都有哪些收获?

  应用勾股定理解决实际问题

  三、课堂练习以上习题。

  四、课后作业卷子。

  本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的'应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

  针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

  一、复习引入

  对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

  二、例题讲解,巩固练习,总结数学思想方法

  活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

  活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

  活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

  二、巩固练习,熟练新知

  通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

  在教学设计的实施中,也存在着一些问题:

  1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

  2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

  3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

比应用教学设计10

  教学内容:

  人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。

  学情分析:

  1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。

  2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的'意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

  教学目标:

  1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。

  3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。

  教学重难点:

  重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

  难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:

  多媒体课件,答题纸,小棒。

  教学过程:

  师:你想到的这个数表示什么意思?

  (预设:平均分、分数线、分子、分母、分数的意义。师选择板书)

  二、探究新知。

  1、初步感受整体由“1个”变“多个”

  (1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?

  (2)、现在你又想到了哪个数?它表示什么意思?

  (3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?

  (4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?

  2.理解部分与整体的关系。

  (1)课件出示六个苹果,动态演示平均分的过程。

  学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)

  (2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)

  3、回顾建模。

  课件出示:

  引导学生回顾总

  结:我们不仅可以把一个完整的物体

  或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。

  三、动手操作,加深认识。

  1、“均匀地分”。

  (1)提出要求:老师给大家准备了12个苹果,

  请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。

  (2)生独立思考,动手操作。

  (3)、汇报交流。

  (4)对比提升。

  课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。

  2、“创新地画”。

  (2)生独立思考,动手操作。

  (3)、汇报交流,展示学生作品。

  预设:因为都是把整体平均分成了2份,取其中的1份。

  师:哪儿不同?

  预设:总数不同,每份数也不同。

  四、闯关游戏,加深理解。

  第一关:“准确地拿”。

  第二关:“独具慧眼”。

  五、回顾反思,结束全课。

  1、引导学生回顾反思:今天你有什么收获?

  2、师给与评价

比应用教学设计11

  教学目标:

  1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。

  2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

  3、培养学生分析、解决问题的能力,养成良好的学习习惯。

  教学重难点:

  体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

  教学手段:

  多媒体课件。

  教学过程:

  一、复习准备,为新课铺垫。

  1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?

  2、今天,老师就和大家一起去哪里看看有哪些好吃的'东西,好不好?

  3、多媒体出示即时练习,指名回答,并说明理由。

  二、创设情境,激趣导入。

  1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?

  2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?

  3、出示课题:文具店。

  二、自主探索,研究新知。

  1、出示教学目标,了解今天的学习任务。

  2、了解图意,获取信息。

  (1)我们一起看看小动物们都买了什么文具呢?

  小兔买了一支笔,花了2元钱。

  大灰狼买了一个文具盒。

  小牛买了3支铅笔。

  (2)们说得真不错,除了这些以外,你还知道什么?

  大灰狼花的钱是小兔的4倍。

  3、小组交流,解决问题。

  (1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。

  (2)学生分组交流,解决问题。

  (3)师生共同探讨:你是怎么想的,说说你的理由。

  (4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。

  (5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?

  (6)小结:求一个数的几倍是多少用乘法计算。

  4、画一画。

  同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?

  请小朋友完成课本48页“画一画”。

  (1)学生独立思考。

  (2)让学生用学画一画。

  (3)指名回答。

  (4)你会用什么是什么的几倍说一句话吗?

  5、经过刚才的学习,你能解决下面的问题吗?

  (1)5的2倍是多少?

  (2)3的9倍是多少?

  (3)6的5倍是多少?

  (4)4的8倍是多少?

  三、巩固应用,拓展创新。

  1、练一练1、2。

  (1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?

  (2)学生独立完成,师生交流。

  2、练一练3。

  (1)小朋友们,喜欢去旅游吗?

  (2)你们去旅游都离不开什么交通工具?

  (3)今天老师给同学们带来了3辆车,你能说出是什么车吗?

  (4)从图中你得到了哪些数学信息?

  (5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。

  四、评价体验。

  今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?

  五、板书设计:

  文具店

  老黄牛花的6元钱 2×3=6(元)

  大灰狼花的8元钱 2×4=8(元)

比应用教学设计12

  教学目标

  1.复习成正比例和反比例关系的量的意义。

  2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。

  3.进一步培养同学们分析、推理和判断等思维能力。

  教学重点和难点

  1、 判断两种相关联的量成什么比例;确定解答应用题的方法。 教学准备 多媒体课件

  教学过程设计

  今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

  一、复习概念

  1、什么叫成正比例的量?它的关系式是什么?

  2、什么叫成反比例的量?它的关系式是什么?

  3、正反比例它们有什么相同和不同的地方?

  二、复习数量关系

  1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

  什么比例?

  1.工作效率一定,工作时间和工作总量。( )

  2.每块砖的面积一定,砖的块数和铺地面积。( )

  3.挖一条水渠,参加的人数和所需要的时间。( )

  4.从甲地到乙地所需的时间和所行走的速度。( )

  5.时间一定,速度和距离。( )

  2.选择题:

  1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。 ① 成正比例② 成反比例③ 不成比例

  2.步测一段距离,每步的平均长度和步数( )。

  ① 成正比例② 成反比例③ 不成比例

  3.比的`后项一定,比的前项和比值()。

  ① 成正比例② 成反比例③ 不成比例

  4.C= πd 中,如果c一定,π和 d( )。

  ①成正比例 ② 成反比例③ 不成比例

  5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。

  ?40:15= 60: ② 40=15×60 ③ 60=15×40

  三、复习简单应用题

  例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

  A、题中涉及哪三种量?其中哪两种是相关联的量?

  B、哪一种量是一定的?你是怎么知道的?

  C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。

  2、总结 正 、反比例解比例应用题要抓的四个环节

  3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

  ①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  ②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

  ③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

  ④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  ⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

  ⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

  四、 巩固练习

  1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

  解:设可装订本。

  (30+10)=500×30

  4 0=15000

  =15000

  =375

  答:可装订375本。

  2、比一比,想一想,每一组题中有什么不同, 你会列式吗?

  (1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

  (2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

  五、拓展延伸

  用正反两种比例解答:

  1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

  六、全课总结

  解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

  七、板书设计

  正反比例应用题

  =K(一定) X×Y=K(一定)

  X和Y成正比例关系。 X和Y成反比例关系。

  正y 、反比例解比例应用题要抓的四个环节

  第一、分析:可分四步。

  第一步:确定什么量是一定的。

  第二步:相依变化的量成什么比例。

  第三步:找准相对应的两个量的数。

  第四步:解方程(根据比例的基本性质)

  第二、设未知数为X,注意写明计量单位。

  第三、根据正反比例的意义列出方程。

  第四、检验并答题。

比应用教学设计13

  1.培养学生认真仔细地审题

  弄明白题意,认真审题是准确解答应用题的先决条件。因此,在教学中可先让学认真审题、读题。俗话说,书读百遍,其意自现。根据解题要求读出题中直接条件和间接条件,构建起条件与问题之间的联系,确定数量关系。审题时还要多多地进行换说法,力求把每一说法的蕴含的运算意义都弄得一清二楚,明明白白,这样不仅能把题目审透彻,而且有利于发展学生思维,为学生打开丰富的解题思路,使学生学会运用不同的方法灵活解题。

  2.寻找应用题中的数量关系

  数量关系是指题目中已知条件、未知条件和问题之间,以及它们各自内部之间的相互关系,简单地说,数量关系就是题目中的相等关系。找数量关系就是用“相等”关系来表述题目。有的题目数量关系复杂,需要对已知条件和问题进行全面仔细的分析研究才能找出。只有找出正确无误的数量关系,才能称得上真正理解了题意,才能正确解决应用题。.

  3.教学生分析应用题常用的方法

  在解题过程中,学生往往习惯于模仿例题的`解答方法。因此,教师要教给学生分析应用题的推理方法,帮助学生明确解题思路。常用分析应用题的方法有分析法和综合法,所谓分析法,就是从应用题中欲求的问题出发进行分析,考虑为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。

比应用教学设计14

  一、内容与解析

  (一)内容:对数函数的性质

  (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

  二、目标及解析

  (一)教学目标:

  1.掌握对数函数的性质并能简单应用

  (二)解析:

  (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

  三、问题诊断分析

  在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

  四、教学支持条件分析

  在本节课()的教学中,准备使用(),因为使用(),有利于().

  五、教学过程

  问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

  设计意图:

  师生活动(小问题):

  1.这些对数函数的解析式有什么共同特征?

  2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

  3.通过这些函数图象请从函数值的分布角度总结相关性质

  4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

  问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

  问题3.根据问题1、2填写下表

  图象特征函数性质

  a>10<a<1a>10<a<1

  向y轴正负方向无限延伸函数的值域为R+

  图象关于原点和y轴不对称非奇非偶函数

  函数图象都在y轴右侧函数的定义域为R

  函数图象都过定点(1,0)

  自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

  在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

  在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

  [设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

  例1.比较下列各组数中两个值的大小:

  (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

  (3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

  变式训练:1. 比较下列各题中两个值的大小:

  ⑴ log106 log108 ⑵ log0.56 log0.54

  ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比较正数m,n 的大小:

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若 且 ,求 的取值范围

  (2)已知 ,求 的取值范围;

  六、目标检测

  1.比较 , , 的大小:

  2.求下列各式中的x的值

  (1)

  演绎推理导学案

  2.1.2 演绎推理

  学习目标

  1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

  2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

  学习过程

  一、前准备

  复习1:归纳推理是由 到 的推理.

  类比推理是由 到 的推理.

  复习2:合情推理的结论 .

  二、新导学

  ※ 学习探究

  探究任务一:演绎推理的概念

  问题:观察下列例子有什么特点?

  (1)所有的金属都能够导电,铜是金属,所以 ;

  (2)一切奇数都不能被2整除,20xx是奇数,所以 ;

  (3)三角函数都是周期函数, 是三角函数,所以 ;

  (4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .

  新知:演绎推理是

  的推理.简言之,演绎推理是由 到 的推理.

  探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

  所有的金属都导电 铜是金属 铜能导电

  已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

  大前提 小前提 结论

  新知:“三段论”是演绎推理的一般模式:

  大前提—— ;

  小前提—— ;

  结论—— .

  新知:用集合知识说明“三段论”:

  大前提:

  小前提:

  结 论:

  试试:请把探究任务一中的`演绎推理(2)至(4)写成“三段论”的形式.

  ※ 典型例题

  例1 命题:等腰三角形的两底角相等

  已知:

  求证:

  证明:

  把上面推理写成三段论形式:

  变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD

  例2求证:当a>1时,有

  动手试试:1证明函数 的值恒为正数。

  2 下面的推理形式正确吗?推理的结论正确吗?为什么?

  所有边长相等的凸多边形是正多边形,(大前提)

  菱形是所有边长都相等的凸多边形, (小前提)

  菱形是正多边形. (结 论)

  小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

  三、总结提升

  ※ 学习小结

  1. 合情推理 ;结论不一定正确.

  2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

  3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

  ※ 当堂检测(时量:5分钟 满分:10分)计分:

  1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

  结论显然是错误的,是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  4.归纳推理是由 到 的推理;

  类比推理是由 到 的推理;

  演绎推理是由 到 的推理.

  后作业

  1. 运用完全归纳推理证明:函数 的值恒为正数。

  直观图

  总 课 题空间几何体总课时第4课时

  分 课 题直观图画法分课时第4课时

  目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

  重点难点用斜二侧画法画图.

   引入新课

  1.平行投影、中心投影、斜投影、正投影的有关概念.

  2.空间图形的直观图的画法——斜二侧画法:

  规则:(1)____________________________________________________________.

  (2)____________________________________________________________.

  (3)____________________________________________________________.

  (4)____________________________________________________________.

   例题剖析

  例1 画水平放置的正三角形的直观图.

  例2 画棱长为 的正方体的直观图.

   巩固练习

  1.在下列图形中,采用中心投影(透视)画法的是__________.

  2.用斜二测画法画出下列水平放置的图形的直观图.

  3.根据下面的三视图,画出相应的空间图形的直观图.

   课堂小结

  通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

比应用教学设计15

  课题:比的应用

  教学内容:义务教育课程标准小学数学六年级上册第三单元《比的应用》

  教学目标:1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

  3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独

  立思考、自觉检验的好习惯,增强学生学好数学的信心。

  教学重点:掌握按比分配应用题的结构特点和解题思路。

  教学难点:正确分析,灵活解决按比分配的实际问题。

  教学准备:教学课件卡片

  教学过程:

  一、复习导入

  1、复习求一个数的几分之几是多少的实际问题。

  2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

  二、讲授新课

  1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的'意思。

  2、利用课件出示例2。

  (1)学生读题,弄清题意。

  (2)引导学生找出题中所提供的数学信息。

  (3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。

  (4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。

  (5)小组讨论解题方法,然后进行汇报,并集体订正。

  (6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

  (7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

  3、 小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  三、巩固练习

  1、解决课前分卡片时所产生的问题。

  2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题

  的异同,并用自己喜欢的方法解决,后集体订正。

  3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,

  鼓励学生用不同的方法独立解决,并引导学生自行检验。

  四、拓展延伸

  利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

  五、课堂总结

  学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

【比应用教学设计】相关文章:

《比的应用》教学设计06-29

比的应用教学设计06-12

比应用教学设计04-04

比的应用的教学设计07-05

比的应用教学设计12-11

《比的应用》教学设计05-01

比应用教学设计05-08

《比的应用》教学设计与教学反思07-21

数学《比的应用》教学设计03-07

《比例的应用》教学设计04-21