
六年级《比的应用》教学设计(精选17篇)
作为一名人民教师,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么教学设计应该怎么写才合适呢?以下是小编为大家收集的六年级《比的应用》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级《比的应用》教学设计 1
过程与方法:
1、能将自己的设想画出图样。
2、能按照自己的设想去制作。
3、能在制作完成后进行尝试并加以改进。
4、能说得出自己应用的主要原理。
科学知识:
1、知道张衡发明地动仪是利用了地震波在大地中传导的原理。
2、知道瓦特发明蒸汽机是利用了蒸气气流的力量。
3、了解发电的多种方法和电转化为其他能量的形式。
情感、态度与价值观:
1、善始善终地从事一项活动。
2、有精益求精的行为倾向。
教学准备:
搜集有关科学原理及其应用的资料,气球、轮胎、卡纸、剪刀、胶带、吸管、泡沫板、木块、橡皮泥、叶轮、皮筋等。
教学步骤:
1、上一节课,我们已经能够利用所学的知识和本领解释生活中的各种现象,懂得和解释是一种本领,能将所学的科学原理应用在物品的制作上是更大的本领。
2、你知道在科学的发展史上有哪些将科学原理应用在制作上的例子吗?
3、学生交流搜集的有关科学原理应用在制作上的例子。
4、阅读书上73页的资料。
5、出示做小车的材料和要求(以空气为动力,比一比谁的小车跑的又快又远)
6、要想在比赛中获胜,你觉得做小车时应当注意些什么?为什么要这样做?你的`依据是什么?
7、回忆一下,做空气动力的小车运用到了我们以经学过的哪些知识?
8、学生动手制作。
9、小车进行比赛。
10、交流有关小船的资料。
11、设计自己想做的小船的草图和所需的简单材料。(应当配有文字说明)
12、你认为制作的小船应当涉及哪些科学原理呢?
13、讨论交流。
14、学生根据自己的设计图利用自己准备的材料制作一个小船。
15、你造的小船涉及哪些科学原理呢?
16、今天,我们将自己所学的科学原理应用到了物品的制作上,这也是一种拓展。
17、其实,科学发展的目的本意就是用来改善人类的生活,促进人类社会的进步。
18、你在平时做过哪些小制作,你知道它们是根据哪些科学原理吗?
六年级《比的应用》教学设计 2
教学重点:
1、掌握两步分数应用题的解题思路和方法。
2、画线段图分析应用题的能力。
教学难点:
渗透对应思想。
教学过程:
一、复习、质疑、引新
1.指出下面分率句中谁是单位1(课件一)
①乙是甲的;
②小红的身高是小明的
③参加合唱队的同学占全班同学的;
④乙的相当于甲。
⑤1个篮球的价钱是一个排球价钱的倍。
2.口头分析并列式解答
①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。
二、探索、悟理
1.出示组编的例题
例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?
学生审题后,教师可提出如下问题让学生思考讨论。
①小华储蓄的钱是小亮的,是什么意思?谁是单位1?
②小新储蓄的是小华的,又是什么意思?谁是单位1?
思考后,可以让学生试着把图画出来。
(演示课件)
然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的`钱看作单位1,可以求出小华储蓄的钱:
根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:
由此基础上试列综合算式:
2.做一做
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1)可先让学生一起分析数量关系,然后独立画图并列式解答。
请一名中等学生板演。
答:小明有40张。
③你能列综合算式吗?
三、归纳、明理
1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。
①认真读题弄清条件和问题
②确定单位1找准数量关系
根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。
③列式解答
板书为:抓住分率句,找准单位1,
画图来分析,列式不用急。
2.质疑问难
四、训练、深化
1.联想练习根据下面的每句话,你能想到什么?
①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)
②修了全长的
③现在的售价比原来降低了
2.先口头分析数量关系,再列式解答。
①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?
3.提高题。
六、板书设计
分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?
六年级《比的应用》教学设计 3
教学内容:
人教版实验教材第十一册第49页。
教材分析:
这部分内容是在学生学过比、分数乘法意义以及分数乘除应用题之后安排的,既加强知识间的内在联系,又为后面的学习奠定了基础。
学生分析:
按比例分配问题是把一个数量按照一定的比进行分配。按比例分配问题有多种不同解法。现在小学教材中一般都采用把比转化为分数用分数知识来解答。因为学生对理解比和分数的关系比较了解,对分数应用题有了一定的基础,所以学习起来应该比较容易。所以本节课的重点应放在如何把比的问题转化为分数问题来解决。何如解决生活中的按比分配问题。
教学目标:
1.知识与技能:使学生理解按比例分配的意义,掌握按比分配的思想,形成按比分配的能力。
2.过程与方法:在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。培养学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。
3.情感态度价值观:重视学生数学 探索按比分配问题的活动经验的积累。培养学生自主、探究、合作的意识和了解家乡,热爱家乡,喜欢数学的情感。
教学重点:
掌握按比分配应用题的结构特点和解题思路。
教学难点:
正确分析,灵活解决按比分配的各种类型的实际问题。
教学方法:
引导、探究、尝试发现法。
学法指导:
自主探究与合作交流有机结合。
教 具:
多媒体
教学过程:
一 、创设教学情境
1.听着歌曲《秦岭最美是商洛》,欣赏商州莲湖公园的图片。
2.莲湖公园这么美,那你对莲湖公园了解多少呢?新建的莲湖公园水域面积有多少亩?绿化面积有多少亩呢?
【设计意图】通过学生听音乐、赏美景、猜地点,吸引学生的注意力,激发学生了解家乡、热爱家乡、为建设家乡而发奋学习的激情。使学生感悟到数学来源生活,学数学是为了更好地生活!
二、实施教学
1.出示例1.
扩建后的.莲湖公园绿化面积和水域面积共165亩,绿化面积和水域面积的比是1:2.
(1)从这句话中你能获得什么信息呢?
(2) 你能提出什么问题?
(3)讨论提示
①绿化与水域总面积被平均分成几份?每份是多少?各占几份?
②绿化面积占它们总面积的几分之几?水域面积呢?
(4)展示学生的四种做法
①先算每一份,再按各部分的份数算。
②先算各部分占全部得分率,再按分数乘法应用题算。
③先算全部是各部分的几分之几,再按分数除法应用题算。
④列方程计算。
(5)让学生比较哪种方法较好。
2.展示课题《比的应用》
【设计意图】首先对教材进行了整合。这里我用孩子们熟悉的,感兴趣的题材呈现“按比分配”的知识点,舍弃了教材原有的题材。其次,在呈现的过程中,培养了学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。再次,是重视了对课堂生成的有效引导和巧妙运用。既重视了学生的创新意识的培养,有对算法进行了优化。
3.知识运用:例题变形
扩建后莲湖公园总面积220亩,其中未绿化的陆地面积、绿化面积和水域面积的比是1:1:2.问未绿化的陆地面积、绿化面积和水域面积各是多少亩?
4.学以致用:医用酒精是用蒸馏水和纯酒精按1:3配制而成。
①若有200ml蒸馏水,需要多少毫升纯酒精恰好能配制成符合要求的医用酒精?
②若有1200ml纯酒精,有足够的蒸馏水能配制成多少毫升符合要求的医用酒精?
【设计意图】重视孩子对知识灵活迁移运用能力的培养。
5.我是小法官:判断正误并说明理由。
(1)学校把栽300棵树的任务分配给六年级三个班,三个班的人数分别是46人、54人和50人。最合理的分配方案是每班栽100棵树。( )
(2)有一些苹果分给幼儿园得小朋友们,大班分得二分之一,中班分得三分之一,小班分得六分之一。大中小班分得苹果的数量之比是3 :2:1( )。
【设计意图】首先,让学生知道平均分是按比分配的一种特殊形式。其次,为拓展运用清障护航。
6.拓展运用
有一位老人,他有三个儿子和17匹马。在他临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。”老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“我把17匹马全都留给我的三个儿子。长子得一半,次子得三分之一,幼子得九分之一。不许杀马,不许流血。你们必须遵从父亲的遗嘱。”
温馨提示:三个儿子分得马的数量之比是几比几比几?化成最简整数比结果是几比几比几?
【设计意图】让学生了解古代趣题中折射出的按比分配原理。
三、谈谈你这节课的收获?
(1)解决“按比分配”型实际问题的方法
①、求出各部分之间的数量比,由各部分之间的数量比可得出各部分占总体的分率。
②、用分数乘法求出各部分的量分别是多少。
(2)我对新建后的莲湖公园有了更多的了解。
四、布置作业
必做题:课本55第4题;
选做题:课本56页第7题;
思考题: 课本56页 第11题。
六年级《比的应用》教学设计 4
一、教学内容:
比的应用,人教版六年级上册第54页内容及相应练习。
二、教学目标:
1、结合生活实际理解按比分配的意义和这一类应用题的特点。
2、掌握按比分配问题的不同解法,体验解决问题方法的多样性。
3、通过学习培养学生收集信息 、处理信息和运用知识解决问题的能力,明白选择解决问题策略的重要性。
三、教学重点:
学生能正确分析和解决“按比分配”的实际问题。
四、教学难点:
“按比分配”中比所对应的数量与总数之间的关系。
五、教学流程:
一、复习导入
出示:一杯果汁是按果汁与水的.体积比1:1冲调,另一杯果汁是按果汁与水的体积比1:2冲调,从上面的信息中你能读出什么?
生谈想法
师:其实不平均的比在生活中随处可以,并广泛应用着,今天,我们就来研究如何按一定的比来进行分配的实际问题。(板书课题:比的应用)
二、探索新知
(一)出示例题
我们清洁要用到一种清洁剂浓缩液,瓶子上标明了浓缩液与水的体积之比。现在我们需要按1:4的比例制一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少呢?
(二)探讨方法
1、分析题目
师:现在我们能不能从题目中获取一些有用的信息呢?
师:谁能解释一下5是怎么得来的?4/5和1/5又是什么意思?
2、独立尝试
师:现在请同学们自己想一想解决这个问题的方法?可以试一试。
师:谁来说一说你的想法。
师:现在你可以选择自己喜欢的方法来解答一下。
方法一:总份数:1+4=5(份)
每份是:500÷5=100(mL)
浓缩液:100×1=100(mL)
水:100×4=400(mL)
方法二:浓缩液:500×1/1+4=100(mL)
水:500×4/1+4=400(mL)
3、分析两种解法
方法一:用整数除法、乘法来解决问题;方法二:用分数乘法解决问题,就是求一个数的几分之几是多少。
4、检验
让学生交流检验的方法,合理正确。
三、巩固练习
独立完成试一试。
四、课堂总结
师:本节课你对哪个知识点印象深刻?
师:比在我们的生活中有很广泛的应用,下课后大家可以去生活中收集一些素材并试着解决一下问题吧。
六年级《比的应用》教学设计 5
教材分析:
本节课是“比的应用”的练习课,是学生在基本掌握了按比分配应用题的结构特征后而进行的综合练习,它是新授课的补充和延续。按比例分配就是把一个数量按照一定的比进行分配。它是“平均分”问题的发展,平均分是按比分配的特例。按比分配问题有不同解法:一是把比看作分得的份数,用份数求出每一份的方法来解答;二是把比化为分数,用分数乘法来解答;三是用比例知识来解答。现在教材一般用第二种方法为主,因为学生在理解了比和分数的关系,并掌握分数乘法实际应用的基础上,比较容易接受这种方法,而且也有利于加强知识间的联系。
练习课是以学生独立练习为主的课型,是新授课的补充和延伸。在教学中,一是要注意发挥练习课的检测评价功能,主要检测学生对知识与技能的掌握情况和思维发展的水平;二是要注意发挥练习课激励功能,因为练习过程是不断解决问题的过程,应使学生在练习过程中感受到问题解决后所带来的成功体验,逐步提高学生学习数学的自信心;三是要注意发挥练习的思维训练功能。思维训练离不开数学的学习,而数学的学习主要是引导学生经历数学的训练,在训练中逐步提高解决问题的能力。
教学过程:
1、笑笑读一本书,已读的页数和未读页数的比是1:3
问:你能变换一种说法吗?
问:如果笑笑继续读,什么变了?什么没变?
【设计意图】
回顾前面的比、分数之间的关系
2、看图说话
盐:
水:
问:通过线段图你读出什么信息?
现要调制这样的盐水140克,需要盐和水各多少克?
独立思考
归纳:这是一个基本的把两个量的和按一定的比进行分配的应用题,即和比分配和比分配
140÷(1+6)
一份的量
3、用120厘米的铁丝做一个长、宽、高的比是3:2:1的长方体框架。这个长方体框架的长、宽、高各是多少厘米?
小组讨论
120÷4×(3+2+1)
和
一份的量
4、两地相距480千米,甲、乙两辆汽车同是从两地出发、相向而行,3小时相遇,甲、乙两辆车的速度比是9:7.甲、乙两车的速度分别是多少?
独立思考
480÷3÷(9+7)
速度和
一份的量
问题:
1、比较2、3题有什么共同点?
2、第1题为什么不用这样做?
归纳:它们都是典型的和比分配应用题
5、小明期中考试中语文、数学的平均分是95,语文、数学成绩的比是3:2。小明语文、数学的成绩分别是多少?
问题:谁有想法了?
95×2÷(3+2)
和
一份的量
问题:1、这和3、4有什么区别?
2、它们有什么共同点?
在日常生活中,并不是所有有关比的应用题都是这样的
6、一块长方形的地,长比宽多24米,长与宽的比是5:3,这块地的面积是多少平方米?
独立思考,汇报自己的想法
差比分配
24÷(5-3)
长与宽的差长与宽相差的份数
一份的量
归纳:典型的差比分配应用题
对应量除以对应的份数就是一份的量
7、五、六年级的同学参加植树活动,五年级植树120棵,五、六年级植树的`棵树比是2:3.六年级植树多少棵?
问题:这和前面的应用题有没有区别?
(已知一部分,求另一部分)
部分比
120÷2
一份的量×3
3份的量
问题:谁有不同的想法?
120÷×
(单位1是-------)
120÷
(单位1是-------)
120×
(单位1是-------)
回顾:1、这几道题有什么共同的解题方法?
(先求一份的量,再求几份量)
2、今天讲的应用题你认为可以分为哪几类?
3、你有什么收获?
挑战自己:
笑笑读一本书,已读的页数和未读页数的比是1:3.如果笑笑再读12页,这时读的页数和未读页数的比是1:2.这本书共有多少页?
提示:抓住不变量
板书设计
和比分配差比分配部分比
140÷(1+6)
一份的量
120÷4×(3+2+1)
和
一份的量24÷(5-3)120÷2
长与宽的差长与宽相差的份一份的量×3
480÷3÷(9+7)
速度和
一份的量
95×2÷(3+2)
六年级《比的应用》教学设计 6
教学目标:
1、通过复习一般类型的分百应用题,使学生明确这类应用题的联系与区别,沟通知识之间的内在联系,熟练掌握解题思路,准确找出量率之间的对应关系。
2、使学生明确分数、百分数应用题的解题思路和解题方法是基本一致的。
3、提高学生分析,判断解答应用题的能力,渗透对立统一的辩证思想。
教学重点:
掌握分数、百分数一般类型应用题的内在联系和解题规律。
教学难点:
数量关系的分析,弄清谁是单位“1”,谁是比较量。
教学过程:
一、创设情境,引入复习内容
1、师:同学们,什么节日快到了?(六一儿童节)
为了庆祝这个节日,我们学校六年一班组成了一个小合唱队,其中有男生5人,女生4人。(磁力贴出示)
(一)复习分百应用题一类题:求一个数是另一个数的几分之几(或百分之几)的应用题
师:根据这两条信息,你能提出什么数学问题?(学生提问题)
(主要贴以下四条)
(1)男生是女生的百(几)分之几?
(2)女生是男生的百(几)分之几?
(3)男生比女生多百(几)分之几?
(4)女生比男生少百(几)分之几?
请同学列式解答。
师:大家看我们今天要复习什么?(分百应用题)
同学们看看这四道题都属于哪类的分百应用题?
(求一个数是另一个数百(几)分之几的应用题)
师:解决这类题的的关键是什么?(找单位“1”)
【预设】1、学生说出找单位“1”
2、学生说不出来,但会说出找关键句,那师应问:找关键句的目的是什么?(确定单位“1”)(板书:找单位“1”)
师:这类题该怎样做?(比较量÷单位“1”)【如果学生说不出此关系式,师可以从四个题中找一个举例,如:男比女多百分之几?是用谁除以谁?】
(二)复习“一个数的百分之几是多少”和“已知一个数的百分之几是多少,求这个数”
1、师:继续刚才的题,我把这四个问题变成了四个已知信息,老师给你们布置一个编题的小任务:请你从这6个条件里选择两个,提一个数学问题,组成新的题。(学生口答,教师贴条)【一定有意识,已知男求女贴一边;已知女求男贴另一边】
1、男生有5人,女生是男生的80%,女生有多少人?
2、男生有5人,男生是女生的125%,女生有多少人?
3、男生有5人,男生比女生多25%,女生有多少人?
4、男生有5人,女生比男生少20%,女生有多少人?
5、女生有4人,男生是女生的125%,男生有多少人?
6、女生有4人,女生是男生的80%,男生有多少人?
7、女生有4人,男生比女生多25%,男生有多少人?
8、女生有4人,女生比男生多20%,男生有多少人?
师:请你独立完成这8道题,要求只列式(或方程)不计算。(学生独立完成)
师:我请同学来说说你是怎样解决这几道题的。(生汇报,在汇报过程中要有关系式,教师板书每一题的等量关系式)
如果我要将这8道题进行分类,请你想想能分几类?把你的想法和小组内的同学交流一下,说说你是怎么分的?(其实就是这两种题的区别是什么)
小组汇报展示。(主要呈现已知单位“1”和未知单位“1”的两种情况,板书体现)
第一类:
1、男生有5人,女生是男生的80%,女生有多少人?
2、男生有5人,女生比男生少20%,女生有多少人?
3、女生有4人,男生是女生的125%,男生有多少人?
4、女生有4人,男生比女生多25%,男生有多少人?
第二类:
1、男生有5人,男生是女生的125%,女生有多少人?
2、男生有5人,男生比女生多25%,女生有多少人?
3、女生有4人,女生是男生的80%,男生有多少人?
4、女生有4人,女生比男生多20%,男生有多少人?
(分类后)师:虽然我们把这8道题按已知单位“1”和未知单位“1”分成了两类,但是它们之间是有联系的,是什么呢?(或者我们说解题的根据是什么呢?)
都是“求一个数的.几(百)分之几是多少,用乘法计算”
【师手指左一类,问:这类都是已知单位“1”的(指一道)比如求男生有多少人实际就是求女生的(1+25%)是多少】
【师手指右一类】这都是未知单位“1”的,(在关系式上标上x)我们就可以用方程来解
师:大家看,我们今天复习的分百应用题,它们的解题步骤是什么?
确定单位“1”——找数量关系式——列式或方程
二、当堂训练
师:大家复习的怎么样了?我出几道题来考考大家!请看第一题
(一)只列式(或方程)不计算
1、在一次体育测试中,某班有38人成绩合格,有2人不合格,这个班的合格率是多少?
2、一本书共100页,小明第一天看了这本书的50%,第二天看了25%,还剩下多少页没有看?
3、小明看一本100页的故事书,第一天看了全书的50%,第二天看了第一天的1/2。第二天看了多少页?
4、小明看一本书,第一天看了这本书的50%,第二天看了25%,第一天比第二天多看了25页,这本书共有多少页?
学生独立完成,教师巡视,指名汇报。
三、解决问题
1、某服装店老板将两件不同的衣服以相同的价格出售,一件赚了25%,另一件赔了25%,有人认为这个老板不赔不赚,你同意这种说法吗?请用数据说明。
2、某机械厂两天生产一批零件,用同样的箱子包装。第一天完成总量的,装满3箱还剩90个,第二天生产的零件正好装满5箱。这批零件共有多少个?
四、课堂总结。
师:通过复习分百应用题的一般类型题,我们掌握了基本解题方法,遇到问题条件比较复杂或隐蔽的题目时,为了把条件具体化,可以通过画图的方法帮助我们分析并找到他们。
六年级《比的应用》教学设计 7
教学目标:
1、使学生理解稍复杂的求一个数的几分之几是多少的应用题数量关系;初步掌握这类应用题的结构特点,解题思路和解题方法。
2、提高学生分析问题的能力。
3、使学生养成认真审题的良好习惯。
教学形式:班级教学与小组合作学习相结合。
一、教学过程
1、铺垫:在旧知的复习中,为学生主动进行新知的学习作好准备。
准备题(1):国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4,我国约有多少只?
教学过程:
①用线段图表示题意,以10厘米为一段,这条线段一共要画几厘米?(学生口答老师在黑板上作图)
②用去是什么意思?(请一个同学上来把它表示出来)
③用去多少吨是求线段中的那一部分?谁愿意上来把它画出来?
准备题(2):人的心脏跳动的次数随年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多60次。婴儿每分钟心跳多少次数?
教学过程:
①准备题(1)反映了总量和部分量的关系,作图时只要画一条线段。这一题反映了什么关系?应画几条线段?
②先画什么?为什么?(学生口答老师在黑板上作图)
③画婴儿每分钟心跳的`次数时先画什么?
④60次应画多长?谁愿意上来把它画出来?
⑤婴儿每分钟心跳的次数是求线段图中的那一部分?
准备题(1)、(2)作图并分析后要求学生用1分钟时间列出两道题目的算术并计算(两人板演),然后讲评并表扬做得全对的同学,同时对个别同学的错误进行有针对性的纠正。
2、探求新知:让学生在主动探索的过程中掌握新知识。
例4:国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4,其它国家约有多少只?
教学过程:
①例4与准备题(1)相比有何变化?
②线段图应该怎么改?你会改吗?(请一个同学上黑板改)
③这道题老师不讲你会做吗?(请两个同学上黑板做,其余学生在下面做,不会的可以看书。)
④作好的同学可以考虑有没有不同的方法,试试看。
⑤作好后准备回答下列问题:把什么看作单位“1”,先求什么?再求什么?
⑥讨论、讲评试做情况,对两种方法全对的同学进行表扬,最后看书并填写书中空白部分。
例5:人的心脏跳动的次数随年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多4/5。婴儿每分钟心跳多少次数?
教学过程:
①例5和准备题(2)相比有何变化?
②线段图应该怎么改?谁会改请你上来指导老师改?
③全班学生四人一组讨论以下问题:
a、把谁看作单位“1”?
b、怎样求婴儿每分钟心跳的次数比青少年多的?
c、婴儿每分钟心跳的次数是青少年的几分之几?
d、你能用两种不同的方法求婴儿每分钟心跳的次数吗?
④选两个讨论小组,每组各推选两人,每人各用一种方法上黑板板演,其余学生在下面做。讨论、讲评试做情况,对讨论得好的小组进行表扬,对讨论中的不足之处提出希望。
3、深化:在新旧知识的对比中,使新知纳入到学生原有的知识结构中。
教学过程:
①引导学生对比每个例题的两种解法,发现在解题思路上不同的是:一种是先求分率,用乘法分配率可以看出两种解法的联系。指出今后两种解法中你认为那一种方便你就用你一种。
②引导学生对比例题和准备题发现今天讲的比过去讲的要复杂一些,讨论复杂在何处。
二、巩固练习:
完成教材第69页“做一做”的题目。
三、课堂总结:
1、这节课学习的应用题有什么特点?(引导学生与准备题比较,找出应用题的结构特点,板书课题)
2、这样的应用题与前边学习的分数乘法应用题之间是什么关系?怎样区别?解答这类应用题的思路是什么?
四、课后作业:
练习十七第1———4题。
六年级《比的应用》教学设计 8
一、教材分析、学情分析
(一)教材的地位和作用
《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。
这部分教材在安排上有以下一些特点:
1、 从学生已有的知识和生活经验出发,帮助学生理解数学。
2、 设置数学活动生活情境,培养学生的解决问题意识和探究精神。
(二)学情分析
对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。
二、教学目标与重难点
根据以上分析,我确定了本节课的教学目标如下:
1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。
2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识
3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。
重点:解答求一个数是另一个数的百分之几的应用题。
难点: 正确理解达标率、发芽率等这些百分率的意义
三、教学学法、教学设计
(一)学生学法
在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在,教师要指导学生观察计算方法,发现共同点,通过思考,提出问题,通过探究,解决问题。
(二)教学设计理念
本节课的教学设计具有以下几个特点:
1、依据知识的迁移规律,进行了必要的铺垫。根据新课“求一个数是另一个数的百分之几”的需要,复习了百分数的意义,以及分数、小数化成百分数的方法,重点突出了准备题,为讲授新课做了铺垫。
2、引导学生找出新旧知识的异同点,进一步强化了教学的重点。
3、精心设计习题,使知识引向深入
四、教学过程:
(一) 创设情境,激趣导入。
1、爱迪生的名言:“我成功的秘诀就是:一份的灵感加上九十九份汗水”
谈谈你对这句话的理解。(成功来自不易等等)
从这句名言你能提出什么数学问题?
2、例如:把“成功”看着100份,那么“灵感”就占了它的`1份,“汗水”就占它的99份。
(1)“灵感”占“成功”的几分之几?
(2)“汗水”占“成功”的几分之几?
今天我们一起来学习百分率的求法。
(二) 范例讲析。
例1.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?
问题1是那两个量相比?
问题2哪个量是单位“1’?怎样计算?
120÷160=3/4
例2.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?
问题1对比两题,什么没有变?问题有何变化?
2,达标率:达标人数占学生总人数的百分之几。
问题3如何求达标率?
达标率=达标人数÷总人数×100%
注意:1求百分率必须乘100%。
2.结果写成百分数的形式。
3.便于比较,计算。
120÷160×100%=0.75×100%=75%
答:六年级的达标率是75%。
六年级《比的应用》教学设计 9
教学目标:
1、会分别进行简单的小数及分数的加减乘除预算及混合运算。
2、能结合现实素材理解运算顺序,并进行简单的整数四则混合运算。
3、经历与他人交流各自算法的过程。
4、能灵活运用不同的方法解决生活重的简单问题,并能对结果合理性进行判断。
5、借助计算器进行复杂的运算,解决简单的实际问题,探索数学规律。
6、了解比例尺,在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
7、在实际情境中理解什么是按比例分配,并能解决简单的问题。
教学重点和难点:
在交流和反思中改掉计算毛病、养成良好的计算习惯。
教具准备:
小黑板、课件
教学过程:
一、创设情境、导入复习
出示小黑板:一部分加减乘除计算题。鼓励学生结合具体的计算过程说一说整数、小数、分数的加、减、乘、除法是怎样算的,交流各种运算的计算方法和四则运算的顺序。这部分是学生进行计算的基础,结合具体的例子鼓励学生说说为什么这样算?
二、回顾整理、构建网络
1、引导学生对自己以往学习中经常出错的题目进行整理和回顾,说说计算中应注意的问题。教学时,可以先让学生课前整理,课上独立思考,然后在小组交流各自错误,并整理出错误类型,最后在全班交流,教师应鼓励学生说出自己出错的原因和计算中需要注意的地方。
2、补充练习:
31.50+160÷40(58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42420+580-64×21÷28
3、出示课本第4题:鼓励学生运用计算解决实际问题,并回顾总结解决实际问题的过程。对于可以直接利用运算意义加以解决的实际问题。(本题可以让学生自由说一说计算的方法,如:可以借助线段图分析,可以用找单位“1”的方法来分析)
4、出示第6题:鼓励学生回顾有关比例尺的应用题和比的问题。这部分内容包括计算比例尺、求实际距离、求图上距离、比的应用。教材只回顾了一部分内容,教师可以根据学生情况进行适当补充。需要注意的是,学生完全能够根据比的意义和比例尺的意义解决问题,不需要背诵所谓的解体过程。
三、重点复习、强化提高
1、计算
236+641-0.25312÷35.01-1.81.63+2.31.25×8
38÷43.75÷0.250.72÷0.61/6+3/818×2/316/9÷2/3
师:由于在计算中遇到各种各样的问题,下面以小组为单位,把你们认为易错的一道题,在练习本上完成,并相互交流。明确整数、小数、分数的加法意义相同,减法意义相同,除法意义也相同,只有乘法意义在分数和小数中有扩展。
2、做54页2题本题让生先说运算顺序在计算,集体订正。
四、自主检评、完善提高
1、一批货物,驾车单独运4小时运完,一车单独运5小时运完。两车合运,2小时后,余下的由乙车运,还需多少时间可以运完?
2、两列火车从甲、乙两地同时相对开出,甲车每小时行驶54千米,比乙车速度慢10%。经过3时,两车行了全程的75%。甲、乙两地相距多少千米?
3、有一种衣服现售价是34元,比原来定价便宜15%。现在比原来定价少多少元?
4、粮店运进一批豆油。第一天卖出240千克,第二天卖出320千克,还剩总数的4/9。这批豆油有多少千克?
5、某服装厂上半月完成全月计划的40%,下半月生产服装1800套,正好完成全月计划。下半月比上半月多生产多少套?
6、做55页3、4、5、6、题:要求:(1)读懂题意(2)找到题中的数量关系(3)选择解决问题的方法,列式计算(4)对答案进行检验
7、做56页7—10题,小组讨论方法并交流
8、做57页11、13、15题学生独立完成集体订正,出示小黑板。
9、板书设计:
计算与应用
1、展示自己的`错误及改正措施
学生1学生2……
2、交流解决实际问题的步骤
五、教学反思:
培养小学生的计算能力和解决问题的能力也一直是小学数学教学的主要目标之一。教材在引领学生回顾这部分内容时,注重让学生体验计算在日常生活中的广泛应用,注重培养学生基本的计算技能,注重在计算中发展学生的思维能力,注重解决简单实际问题能力的培养,更注重学生回顾和反思能力的提高。
六年级《比的应用》教学设计 10
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:
应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:
水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】
2、分一分(教师拿出纸杯)
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的.人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、 制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、 谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:
1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”
⑤ 现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
六年级《比的应用》教学设计 11
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
知识与技能:
能运用比的意义解决按照一定的比进行分配的实际问题。
过程与方法:
讲练结合,小组合作,三疑三探。
情感、态度、价值观:
进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、创设情境,设疑自探
1、课件出示教材中的情境图,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。
(没有告诉学生小棒的数目。)学生分好后,交流分法。
3、小结。
二、解疑合探,知识迁移
1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。
2、交流方法,展示。学生可能出现的方法:
⑴、借助表格分。
⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。
3、引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶利用乘法的`意义解题。
4、你喜欢哪种方法,请说明理由。
5、回忆学过的“平均分配”,可以看成几比几?
三、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?
2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
四、总结评价,课后延伸。
1、总结。
2、布置作业。
板书设计:比的应用
大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
3、先求出一共分成几份,再求出大班和小班分的个数分
(以上方法可借助课件演示帮助学生理解。)
六年级《比的应用》教学设计 12
教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力。
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答按比例分配应用题。
教法:
启发引导法,演示法学法:观察比较,合作交流。
教学准备:
多媒体课件。
教学过程:
一、复习解决下面各题:化简:27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论
1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?
2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
三、新授新知教学例2
(1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)
(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)
水的体积:500×4=400(ml)
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的.体积:500×1/5=100(ml)
水的体积:500×4/5=400(ml)
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)
做一做第1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结
今天我们学到了什么?
六、家庭作业
教材第50页,练习十二1-3题。
教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
六年级《比的应用》教学设计 13
课题:比的应用
教学内容:义务教育课程标准小学数学六年级上册第三单元《比的应用》
教学目标:
1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。
3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。
教学重点:掌握按比分配应用题的结构特点和解题思路。
教学难点:正确分析,灵活解决按比分配的实际问题。
教学准备:教学课件卡片
教学过程:
一、复习导入
1、复习求一个数的几分之几是多少的实际问题。
2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。
二、讲授新课
1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。
2、利用课件出示例2。
(1)学生读题,弄清题意。
(2)引导学生找出题中所提供的.数学信息。
(3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的结构特点。
(4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。
(5)小组讨论解题方法,然后进行汇报,并集体订正。
(6)引导学生用不同的方法解决问题,重点理解按比分配的方法。
(7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。
3、 小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?
三、巩固练习
1、解决课前分卡片时所产生的问题。
2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题的异同,并用自己喜欢的方法解决,后集体订正。
3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,鼓励学生用不同的方法独立解决,并引导学生自行检验。
四、拓展延伸
利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
五、课堂总结
学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。
六年级《比的应用》教学设计 14
教学目标:
1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。
2、掌握根据比例尺求图上的距离或实际距离的方法。
3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。
教学重点:
根据比例尺的意义求图上距离或实际距离
教学难点:
设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。
教学过程:
一、创设情境,揭示课题
1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)
2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的.应用)
二、自主探索
1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)
2、出示下面地图,思考从图上你能获得哪些信息。
3、学生汇报:从图上可以看到想去的地方的方位,比例尺是多少,可以看出居住地及旅游的线路
4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。
(1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)
(2)学生试做,并指名板演。
(3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)
5、学习求图上距离的方法
(1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?
(2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)
(3)学生试做并板演。
(4)集体订正,说一说,每种方法的思路及注意点。
6、学生看书3738页,提出不懂的问题,集体解决。
三、反馈提高
1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?
(1)1:1000
(2)1:2000
(3)1:5000
(4)1:10000
选第(3)个最合适,让学生说明原因
2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。
3、根据条件绘制金山镇镇区平面图
(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)
(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)
四、小结:今天你学习了什么内容?有哪些收获?
五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。
六年级《比的应用》教学设计 15
【教学内容】
比例尺应用
【课题】
比例尺
【设计教师】
xx老师
【学习目标】
1、使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。
2、认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。
3、理解比例尺的书写特征。
【学习重点】
比例尺的意义。
【教学难点】
将线段比例尺改写成数值比例尺。
【学习方法】
自学合作探究
【学习过程】
一、揭示课题
出示地图。(挂图)
比例尺1:500000000
(1)学生观察地图,找到图中标注的比例尺。
(2)教师说明比例尺的.作用。
(3)引出课题,并出示本节课学习目标及自学要求
(4)结合课件检验自学情况:
师:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这个比就是我们要学习的内容——比例尺。
二、探索新知
1、什么叫做比例尺?提问:
一幅地图的图上距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺
2、数值比例尺。
(1)出示课文插图。
(2)找到“比例尺1:100000000”。
(3)认识数值比例尺。
①1:100000000是数值比例尺。
②1:100000000表示图上距离1厘米相当于实际距离100000000厘
③因为1千米=1000米
1米=100厘米
所以1厘米:100000000厘米=1厘米:1000千米
1:10000000也可以表示图上距离1厘米相当于实际距离1000千米。
④1:100000000有时也写成分数形式。
3、线段比例尺。
(1)0——50km
(2)表示什么?
因为:1千米=100000厘米,50千米=5000000厘米
出示课文插图。
(2)找到“比例尺0——50千米”。
认识线段比例尺。
①说明:“比例尺0——50千米”是线段比例尺。
②“比例尺0——50千米”表示图上距离1厘米相当于实际距离50千米。
(写出相应板书)
(4)改写成数值比例尺。(例1)
①你会把这个线段比例尺改成数值比例尺吗?
②学生尝试改写,并与同学交流,最后师生共同改写。
板书格式:图上距离:实际距离
=1㎝:5000000㎝
=1:5000000
4、放大比例尺。
在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数后,再画在图纸上。
(1)出示课文中的“图纸”。
(2)找到“比例尺2:1”。
(3)比例尺2:1表示图上距离2厘米相应于实际距离1厘米。
板书:比例尺2:1
图上距离实际距离
(4)这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5、比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1:5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
三、目标检测练习
1、做一做。
过程要求:
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2、完成课文练习八第1~3题。
四、课堂小结:
六年级《比的应用》教学设计 16
教学标:
1、能运用比的意义解决按照一定的比进行实际分配的实际问题。
2、进一步体会比的意义。
3、提高解决问题的能力。
教学重点:理解按一定比例来分配一个数量的意义。
教学难点:根据题中所给的比,掌握各部分量占总量的几分之几,能熟练地用乘法求各部分量。
教具学具:多媒体课件
教学过程:
一、创设情境,激发兴趣
小调查:奶茶中,奶与茶的比是3:7,从中你可以获得什么信息?
3月12日是植树节,学校把种植42棵小树苗的任务分配给六年级人数相等的三个班,怎样分配才合理?(平均分配)
出示课题:这就是今天我们要学习的“比的应用”
二、分析探究,初步感知
出示题目:老师这有一筐橘子,把这筐橘子按3:2分给幼儿园大班和小班应该怎样分?(课件显示)
(学生独立思考一会儿,有的同学想到要实际分一分)
师:这样吧,我们用小棒代替橘子,小组分一分
(老师给每组相同数量的小棒,但没有告诉学生小棒的数量,学生按3:2分小棒,教师巡视)
师:分好了吗?说说你们是怎样分的?
生1:先给大班3根,小班2根;然后再给大班3根,小班2根,就这样一共分了8次分完。由此可知这堆小棒有40根,最后大班分到24根,小班分到16根。
生2:我们前两次分得跟他们一样,第三次我们发现剩的太多,我们就给大班分6根,小班分4根,就这样又分了两次分完,结果也是大班分到24根,小班分到16根。
生3:我们的分法和他们的不一样,我们按3:2来分,因为小棒有一大堆,我们就想给大班分30根,小班分20根,后来发现不够,就给大班15根,小班10根,剩下的再给大班9根,小班6根,正好分完。
师:虽然分得结果一样,但是你们的方法却不尽相同,可见同学们是用心、用脑去想了。事实上,很多科研成果也是通过科学家们的无数次试验得来的,希望你们把这种好的学习方法保持下去。
师:在这次分小棒的活动中,你们有什么发现?说说你们的感受。
生1:我觉得不管怎么分我们都要按3:2的比来分,也就是我们每次分的小棒的个数比是3:2。
生2:我发现6:4,30:20,15:10,9:6结果都是3:2。
生:我觉得按3:2的比分和我们以前学过的平均分给两个人不一样,因为平均分后两个人每人分得的个数相同,而按3:2的比分两人分得的'个数不同。
师:实际上以前我们学过的平均分就是按照1:1进行分配的。
师:如果现在有140个橘子又该怎么分?把你的想法在四人小组内说一说。
生1:我觉得现在橘子数目大了,再像刚才那样一次一次的分太麻烦,实际上按3:2来分的意思就是大班3份,小班2份,还是先算出来再分比较好。
生2:......
比较不同的方法,说出你的解题思路,并找找他们的共同点(课件展示)
方法一:列表法
方法二:画图
3+2=5 140÷5=28(根)28×3=84(根)28×2=56(根)
方法三:列式
3+2=5 140× =56(根)140× =84(根)
小结:在解决实际问题时,同学们要认真分析数量关系,可以选用自己喜欢的方法来解答。
三、运用新知,学以致用
1、独立完成教材56页“试一试”,集中反馈。
2、独立完成教材56页“练一练”2题。,找学生板眼,集中反馈,讲解不同的解题思路。
3、用48厘米的铁丝围成一个长方形,这个长方形长和宽的比是53,这个长方形长和宽各是多少?
四、归纳拓展,巩固新知
教材56页故学故事
五、总结全课
1、学生看书回顾本节学习内容
2、对于这节课的学习,你还有什么疑问?
3、说说这节课你的收获。
六、作业:
按不同的比例把糖和水配成糖水,品尝之后,记录好你最喜欢的糖水比例。
六年级《比的应用》教学设计 17
【教材分析】
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。
课上准备:有关课件、黄、蓝色颜料、量杯等。
【教学重点】
理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】
理解按比分配的实际意义,沟通比与分数之间的联系。
【教学设计】
一、情境导入
情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)
看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)
现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)
【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】
情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)
【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】
二、实验操作
1、动手操作,调配绿色
师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)
要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。
(学生动手操作,老师进行指导。)
配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。
【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】
2、观察发现,得出结论
(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)
师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。
学生调配的绿色可能会出现如下情况:
① 所有的'小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。
② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?
根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。
(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。
师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。
【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】
3、再次调配黄色与蓝色的比为3:2的绿色。
(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?
学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。
【策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。】
师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?
(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。
【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】
三、动笔计算
1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?
2、学生独立试做,并交流不同的算法。学生可能出现的算法:
方法1:3+2=5 120×3/5=72ml 120×2/5=48ml
师:2/5和3/5各表示什么?说给同桌听一听。
方法2:3+2=5 120÷5×3=72ml 120÷5×2=48ml
师:谁能说说他是怎么想的?
方法3:解:设一份量为xml。
3x+2x=120
5x=120
x=24
3x=24×3=72
2x=24×2=48
方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml
3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)
4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。
【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】
三、小结
像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)
【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】
四、巩固应用
1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。
师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”
2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)
老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。
咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。
(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)
你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)
【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】
四、总结。
1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?
2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。
【六年级《比的应用》教学设计】相关文章:
比应用教学设计05-08
比的应用教学设计12-11
《比的应用》教学设计05-01
比的应用教学设计10-12
比的应用教学设计10-12
六年级《比的应用》教学设计05-10
《比的应用》教学设计与教学反思06-16
《比例的应用》教学设计04-21
数学《比的应用》教学设计03-07
比的应用优秀教学设计06-12