数学教学设计【荐】
作为一位杰出的老师,常常要根据教学需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计应该怎么写才好呢?下面是小编收集整理的数学教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
数学教学设计1
教学内容:
苏教版义务教育教科书《数学》四年级下册第31-32页练习五第12- 19题及思考题。
教学目标:
1.使学生进一步掌握三位数乘两位数的笔算方法,能正确计算得数;进―步熟悉常见的数量关系,能应用相关的数量关系解决实际问题,并能说明解决问题的想法。
2.能在解决问题中发现新的数量关系并应用于解决相关实际问题,培养细心笔算、认真检查的良好品质。
教学重点:常见的数量关系应用。
教学难点:综合应用数量关系解决实际问题。
教学准备:多媒体课件。
教学过程:
一、复习回顾s
1.做练习五第12题,练习三位数乘两位数的笔算。
教师出示题目,让学生说说这几道算式的特点。
思考:三位数乘两位数笔算的计算方法是什么?
提示:先说说三位数乘两位数笔算的方法,再进行竖式计算。
比较:两位数乘两位数、三位数乘两位数的计算方法有什么相同点?
明确:三位数乘两位数和两位数乘两位数的计算方法相同,都是先用两位数个位上的数去乘另一个乘数,再用两位数十位上的数去乘另一个乘数,再把两次乘得的积相加。
2.提出问题:我们学习了哪些基本的'数量关系?
小组合作交流,学生整理信息再进行汇报。
二、基本练习
1.做练习五第13题。
让学生自主填表,说说“单价、数量、总价”和“速度、时间、路程”这两组数量之间的关系。
说说题中已知哪两个数量,根据数量关系式怎么求第三个数量?又是根据什么进行列式计算?
2.做练习五第14题。
让学生说说已知什么条件,要求什么问题?
学生在反馈时,重点让他们说说已知什么?要求什么?
用到的数量关系式是什么?列算式依据是什么?
最后让学生进行汇报交流,“通过练习,引导学生初步感知“速度、时间、路程”三者之间的关系。
3.做练习五第15题。
出示练习题,提问:这道题又和我们生活中什么问题有关呢?(工程问题)
组织学生结合题目认识工程问题中的“工作总量”“工作时间”“工作效率”。
分析工程问题的数量关系:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
组织学生独立解决问题。教师巡视,进行个别辅导。
组织全班汇报交流:
第(1)题:24×8=192(个)
第(2)题:192÷24=8(时)
第(3)题:192÷8=24(个)
4.做练习五第17题。
思考:解决这个问题时,要先算什么,你是怎样思考的?
明确:根据什么问题找出数量关系?让生注意解答的格式。
三、综合练习
1.做练习五第18题。
让学生独立分析问题,说说是怎样根据问题选择条件的?
让学生自主解答。
再进行汇报。
教师提问:有没有不同的解答方法?
2.做练习五第19题。
说说你是怎样分析数量关系的?
让学生自己解答。
全班交流过程中让生体会到:列综合算式计算的简便之处。
3.完成练习五的思考题。
这道题可以供学有余力的学生进行练习,在巩固竖式计算方法的同时,培养学生的逻辑推理能力。
四、全课小结
1.总结评价
回顾本节课的学习过程,你有什么收获?还有什么疑问?
2.布置作业
完成补充习题。
板书设计:
练习五
基本数量关系:
总价=数量×单价/路程=速度×时间
数量=总价÷单价/时间=路程÷速度
单价=总价÷数量/速度=路程÷时间
数学教学设计2
教学对象:小学高年级学生。
教学活动目标:
1、通过活动培养学生学习数学的兴趣;
2、提高学生的文学能力,加强数学与文学的联系,体现学科间的互通性与相联性;
3、培养学生的联想、迁移能力,发展学生智力。
教学准备:诗词、谜语、题卡。
教学过程:
(一)引入:数学是一门重要的工具学科,日常生活中处处都涉及到数学知识。从平时的观察中,我发现同学们有偏科现象,有些同学偏爱语文,有些同学偏爱数学。其实,数学与文学有着非常密切的联系,这节课我们一起来研究数学知识在文学中的妙用。
(二)数学知识在诗词文学中的妙用:
出示诗二首:
①一去三四里,烟村四五家;
门前六七树,八九十枝花。(乡村景色)
②一片两片三四片,五片六片七八片;
九片十片无数片,飞入梨花都不见。(形容雪花纷飞)
(1)问:诗中共有几个数字,从诗中我们可想象出什么?诗中的十个数字体现了怎样的意境?
(2)指出:两首诗都用了1~10这十个数字,巧妙入诗,成为千古佳句。
(三)数字成语:
我国文化源远流长,四字成语之多,当居世界第一。尤其值得指出的是,许多成语、口语中都镶嵌了数目字,所占比例非常大。看来,数字与中国人特别投缘。下面我们利用成语、常用语中涉及的数字,做一做巧妙的计算游戏。
1、在( )里填数字,组成数,按规定进行计算。
如:(十)拿(九)稳-(七)上(八)下=(三)位(一)体
算式:109-78=31
分组竞赛:(在规定时间内全体同学操作,看哪一组组员做对的总题数最多。)
①( )光( )色×铁价不( )=( )货公司
算式:
②( )年青÷( )合花=( )花齐放
算式:
③( )刀( )断×( )字经=( )头( )臂
算式:
④( )嘴( )舌×( )视同仁=( )上( )下
算式:
⑤( )万火急×( )指连心=( )万富翁
算式:
⑥( )( )生肖×连升( )级=( )( )( )计
算式:
⑦( )年树木×( )年树人=各有( )秋
算式:
⑧( )面威风×( )窍生烟=( )颜( )色
算式:
⑨( )霄云外-( )见如故=( )面玲珑
算式:
⑩( )令( )申+( )波( )折=( )通( )达
算式:
2、根据等式填成语或口语。
如:算式:78+23=101
成语:(七)上(八)下+(两)面(三)刀=(百)无(一)失
(1)分组竞赛:(比一比哪组做得又对又快。结束后小组间互相交换,评价答案是否可行。)
①算式:48-36=12
成语:
参考答案:(四)平(八)稳-(三)头(六)臂=(一)刀(两)断
②算式:9+1001=1010
成语:
参考答案:(九)霄云外+(千)钧(一)发=(十)全(十)美
(2)每个小组出一道类似的'题目(必须先拟定参考答案),指名考一考另一小组。
(答对的加1分,答不上的扣1分:由出题的小组出示答案,并加1分。)
3、分别用“一”至“十”10个数字为头,写出十个成语。
一( );二(两)( );
三( );四( );
五( );六( );
七( );八( );
九( );十( )。
(每对一个,计一分)
(四)数学谜语:
导入:数学与文学之间还有一些很有趣的联系,如数学谜语,既可以由数字想象出文字,又可以根据文字的意思联想到数学名词。
抢答:
(1)7/8(猜一成语)七上八下
(2)并肩前进(猜一数学名词)平行
(3)0.30元(猜一数学名词)三角
(4)七天七夜(猜一图形长度)周长
(5)两牛相斗(猜一几何名词)对角
(6)2~9999(猜一成语)万无一失
(7)7分钟+8分钟=1000元(猜一成语)一刻千金
(8)10002=100×100×100(猜一成语)千方百计
(五)小结评价:数学在生活、学习和其它学科领域中的应用广泛,起着其它学科不可替代的作用。善于应用数学知识,才能使人类智慧得以提升。在今天的活动中,同学们思维敏捷,拓宽了视野,开阔了眼界,相信在今后的学习中会更投入,取得更好的成绩,能做到吗?(激起学生学习的热情!)
(六)课外拓展作业:寻找生活中除文学外,数学知识在其它方面的应用。
数学教学设计3
数学教学设计是面向教学系统,解决教与学的问题,为促进学生学习和成长而设计的一套系统过程。它是课堂教学的蓝本,是落实教学理念和指导教学行为的方案,是提高课堂教学效率、促进学生全面发展的前提和保证。中学数学教学设计是一门科学,必须遵循一定的教育、教学规律,依据课程内容、学生特征和环境条件,运用教与学的原理,策划师生学习互动活动;它也是一门艺术,必须融人设计者的丰富经验,分析教学中的问题和生成的可能,设计出有效解决数学教学的方法和策略。
一、强化基础学情分析找准教学设计的落脚点
学情分析是教学设计的重要组成部分,与教学设计的其他内容有着紧密的联系。是教学目标设定的基础,是教学内容分析的依据,是教学策略选择和教学活动设计的落脚点,学情分析是对以学生为中心的教学理念的具体落实。
1,学生的知识储备。新数学课程标准指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”学生在学习新知时,一般会受到旧知的影响,在旧知的基础上,认识新知,重构知识网络。数学教师在教学设计前,要加强对学生知识背景进行有效分析,包括对学生已具备的有利于新知识获得的旧知识的分析,还要对不利于新知识获得的旧知的分析。因此,数学教师要结合学生已有的知识储备,来设计富有情趣和针对性的数学教学活动。
2.学生的思维能力。埃德.拉宾诺威克兹在《思维.学习.教学》一书中说:“作为教师,我们教儿童。既然我们教儿童,那我们就要了解儿童怎样思维,儿童怎样学习。”许多数学教师在进行教学设计时,往往关注的是“怎样教”,而忽视学生“怎样学”。新数学课程标准明确指出:“要注重启迪和发展学生思维,使学生数学思维能力得到形成和发展。”因此,小学数学教师在进行教学设计时,要充分关注、分析学生已具有的思维能力和思维方式,使教学设计与学生的思维方式有效对接。另外,对学生学习态度、学习兴趣的分析也是不能忽视的内容。
3.学生的数学素养。为学生数学素养的判断提供了理论基础及基本思路,准确地判断学生的起始数学素养是进行有效教学设计的前提。学生的综合素养不仅仅在于掌握多少数学知识,也不在于能解决多少道数学难题,而是关注他们能否运用数学思想方法解决实际问题,形成进一步学习研究的能力。因此,教师要根据各个学生的能力差异,设计有针对性、实效性的教学内容,教学内容的设计不能过高,也不能降低教学要求,要做到因材施教,使设计的教学内容在学生的最近发展区内。帮助学生掌握学习数学的方法,培养学习数学的能力,加强学法的指导,切实提高学生的数学素养。
二、优化教学内容设计找准教学设计的基本点
优化教学内容,要根据教学目标和学生实际,运用现代化的教学手段和教学方法,对教材进行整合、开发、创新处理,以分散教材的难度,减缓知识的坡度,使教学内容更趋于合理,让教材的教育教学功能得到充分体现,切实提高教学效率。
1.处理好四维目标。义务教育阶段的数学课程,根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,确立了“知识与技能”“数学思考”“解决问题”“情感与态度”等四维目标。体现了数学教学不只是为了提高学生的基础知识和基本技能,而且要使学生在数学学习中,获得基本的数学思想方法和应用技能,体会数学与社会生活的联系,加深对数学的了解,产生浓厚的学习兴趣,提高学生的数学素养。但是四维目标,只是课程设计和教学设计的总体目标,不是每节课设计的具体目标,在具体的教学设计过程中,要进行分解、细化,生成具有导向性的具体目标。
2.设计好教学目标。教学目标既是教学活动的出发点,也是方向。小学数学教学目标不仅包括知识和技能,还包括数学思考、解决问题以及学生对数学的情感与态度等方面的要求。对目标的不同理解会形成不同的教学设计,从而形成不同水平的课堂教学。
在进行小学数学教学设计时,要紧紧围绕“三维教学目标”,即“从知识与技能、过程与方法、情感态度与价值观”这三个维度来设计教学内容。在设计中要做到重“知识”,也要重“技能”;重“过程”也要重“方法”;还要重“情感、态度、价值观”,注意“三维教学目标”是一个不可分割的整体。
3.组织好教学内容。教材是教师教学的一种依据,是学生从事数学活动、实现学习目标的重要资源。教材内容是一个静止的知识库,与学生接受知识的动态过程不可能完全吻合。有效地组织教学内容是教学设计的一项重要工作。设计前教者要分析教材的编写特点,领会编者的意图,把握教学内容在整个教学体系中的地位和作用。要根据学生的认知规律,注意知识的呈现顺序,即先出现什么,再出现什么。要分析教学中的重点和难点。在设计相应的练习时,要加强练习题的针对性、有层次性,真正达到知识的形成、巩固与应用的目的。所以教师要从学生实际出发,创造性地使用教材,大胆取舍教材内容,可打破章节顺序,进行有选择的、科学的再创造、再加工,合理优化教材结构。
三、优化学生学习方式找准教学设计的关键点
教学目标能否实现,很大程度上取决于教师教学方法和学生学习方法的选择。教师要重视学法的指导,让学生的学习方法产生实质性的变化,提倡“动手实践、合作交流、自主探究”,逐步改变教师讲、学生听、不停练的局面,促进学生创新意识和实践能力的发展。
1.动手实践。动手实践是学生学习数学的重要途径和方法之一,在小学数学教学中起着十分重要的作用,它是用外显的动作来驱动内在的思维活动,从中感悟、理解知识的形成,体会数学学习的方法与过程。在教学设计中,教师要结合教材特点、学生年龄特征,恰当地运用直观操作,师生互动,让学生运用多种感官参与学习。
2.自主探究。探索是数学的生命线。探究性学习应成为课堂教学实施创新学习的重点。对于教材中那些后继性较强的教学内容,就应大胆放手让学生自己去探索,去发现。学生学习数学知识,本来就应是主动地构建知识的过程。创设有效的探索场,是学生进行有效探索的前提和保证,教师要对教学内容进行有效的开发,要勇于创新,在吃透教材、吃透学生的情况下,不断创设行之有效的探索场。当然,在课堂教学设计中,在不同教学阶段创设不同的探索场,给教师们提出了更高的要求。事实证明,经常创设不同的探索场,能达到事半功倍的教学效果。
3.合作交流。当今时代科学研究的主要方式是集体研究,通常组建研究小组,按一定的方案,合作有序地研究并最终达到研究的目的。合作学习体现了教学活动中各动态因素的.多边互动,尤其是生生互动,对于发挥学生的学习积极性、主动性、创造性起到了不可替代的作用。在教学设计中要合理设计合作交流活动,当学生自己独立解决某个问题遇到困难,需要他人帮助时,主要在教学的重点与难点处,在知识易混淆处,在概念、公式、规律的探索与归纳的过程中,而且要对合作交流中可能出现的情况加以预测与估计,为它们预设好通道,预留足时间,才能收到事半功倍的教学效果。
四、优化课堂教学流程找准教学设计的着力点
教无定法,但要得法。任何新知的教学都要通过一定的教学程序来实现。教学程序应体现所教知识的特点,并符合儿童的认知规律。显然,教学程序应有一定的规律性和科学性。因此,要提高教学效率,必须优化教学程序,可采取一些有效的措施,进行个性化的教学设计,弹性化的教学设计。叶澜指出:在教学过程中要强调课的动态生成,要求教学方案的设计应“着眼于整体,立足于个体,致力于主体”,重在大环节的策划上,让过程的设计具有一定的弹性,为学生参与留出足够的时间与空间,改变过去课堂活动以教师为中心、学生围着老师转的格局,为教学过程的动态生成创造条件。鼓励学生主动探索、大胆质疑,让师生在互动中实现智慧的碰撞、情感的交融和心灵的沟通,使课堂成为一个有丰富内涵的个性舞台。
开放式的教学设计,让学生自己发现问题、分析问题、解决问题。改变传统的教学模式,摒弃单调、生硬的一面。组织开放性教学,教师要把握好教学内容,激发学生学习的积极性,提供学生充分从事数学活动的机会,积极地为学生创设开放的学习氛围,让每个学生在探索中成长。真正实现人人学有价值的数学,人人都能获得必需的数学,让不同的人在数学上得到不同的发展。
以人为本的教学设计,要优化课堂导入,重视诱发学生的情感,激发学生学习的兴趣。教学过程设计中,要注意使学生生动活泼地学习,在快乐的身心交流中学习、成长。设计的评价过程,要促进学生的主体发展,成为整个教学活动的一种“润滑剂”。只有这样才能实现开展有效教学,提高教学质量的目标!
数学教学设计4
这堂课给人的感觉是水到渠成,如沐春风,教师教得亲切,自然,活泼,学生学得轻松愉快,有以下优点值得我们学习:
1、教学设计新颖别致,整堂课不觉得在学,而觉得是一堂套圈的活动课,学生是参与者,教师是评委,在玩中学,比生硬的说理更让人信服,更富有感染力,哪个学生不好玩,不好动?这堂课满足了学生的兴趣,所以气氛也相当的活跃,无疑,教学设计是成功的。
2、教学流程生动,流畅,层次感强。如三次套圈,每次的目的都不同,第一次引出连加,第二次引出连加中的进位,教师并进行重难点引导,第三次是估算,也是在游戏中进行,为后来的.环节打下基础,最后,用600元钱买价格不同的动物娃娃,够不够?将连加运用到生活中,一气呵成,环环相扣,层层铺垫,教学环节相当严谨。
3、学生真正成为了学习的主人。让学生动手实践,自主探究,合作交流,是新课标倡导的学习方式,这节课也把权力下放,教师只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,激活他们的思维,如套圈比赛,男女生竞争,提高了学生的主动参与的面和质量,让人觉得是学生在推波助澜,学生们自主合作完成了学习任务,有一点启发:只要教师放开你呵护的双手,就会发现,孩子也是一个发现者,研究者,探究者。
几点建议:
一、生活中处处有数学,能否多举几个例子;
二、在学生上台套圈时,能否交给台下的同学一些任务,如让他们算结果等;
三、课堂要有小结,但这堂课的小结过于匆忙,流于形式
数学教学设计5
教学目标
1、知识与技能:
1、让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理作出合理的解释。
2、使学生体会小数乘法是解决生产、生活中实际问题的重要工具。
2、过程与方法:
在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。
3、情感态度与价值观:
引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重难点
1、教学重点:
让学生通过主动探索,理解并掌握小数乘小数的计算方法。
2、教学难点:
理解小数乘小数的算理。
3、考点分析:
利用整数的乘法原理解决小数乘小数的算法,让同学们在以后的学习中能够理解小数乘法的能力,高效快捷的计算小数的乘法。
教学工具
多媒体设备
教学过程
教学过程设计
1、情境导入
同学们,前面我们学习了小数乘整数和整数乘小数,我们根据原则能不能计算一下下面的题目。
1、复习旧知:
师:根据15 × 12 = 180,直接写出下面各题的积。
15 × 1.2=?
1.5 × 12 =?
生:
15 × 1=18
1.5 × 10=18
师:
那么大家知道:1.5x1.2=?
2、导入新知:
师:同学们,下图中是一个课桌,我们能看图解决下面的问题吗?
①从图中,你能获取那些数学信息?
②根据这些信息,你能提出哪些数学问题?
③下面我们就来解决课桌的面积有多大?
你会列式计算小课桌的.面积吗?
生:
①从图中我们可以看到课桌的长和宽。
②提问:怎样求课桌的面积呢?
2、探究新知
一、问题解决(1)
1、多媒体展示问题
1、多媒体展示计算流程
师:我们大家一起来解决前面的第一个问题?
学生:观看课件解题过程
在观看课件的过程中教师要合适的进行讲解,让同学们看清小数乘小数的解题过程。
2、问题解析:
二、问题解决(2)
1、多媒体展示问题
师:我们大家一起来解决前面的第二个问题?
学生:举手发言
通过上一个例题的讲解,学生们能够更加踊跃的举手回答问题,在竞争学习中,学生会获得学习的成就感。
三、实际问题(例1)
1、多媒体展示问题
师:现在同学们来看看小数的乘法究竟如何计算?
计算:1.3x1.2
生:
学生分组以最快的速度进行思考,看谁能最快找出解题思路。
2、问题解析:
第一步:同学们先来计算:13x12
第二步:数一数因数中总共有几位小数?
因数总共有2为小数,所以积有2位小数。
第三步:把整数乘法的即向前移动2位。
四、实际问题(例2)
1、多媒体展示问题
师:计算:0.14x1.2
生:学生分组以最快的速度进行计算,看哪个小组计算得又对又快。
2、问题解析:
第一步:同学们先来计算:14x12
第二步:数一数因数中总共有几位小数?
因数总共有3位小数,所以积有3位小数。
第三步:把整数乘法的即向前移动3位。
五、实际问题(例3)
1、多媒体展示问题
师:计算:1.1x0.12
生:每位同学都看是进行计算,看那位同学计算的又快又准。
2、问题解析:
第一步:同学们先来计算:11x12
第二步:数一数因数中总共有几位小数?
因数总共有3位小数,所以积有3位小数。
第三步:把整数乘法的即向前移动3位。
3巩固提高
1、师:现在请大家看屏幕上面的这几道题,能不能找出那些是正确的,哪些是错误的。(课件出示题目)
师:要找出正确的题目,主要是找对小数点的位置。
生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。
解:
56.7×38=2154.6正确
0.37×0.94=3.478错误,应该是0.3478
41.2×9.2=3790.4错误,应该是379.04
0.78×6.1=47.58错误,应该是4.758
2、师:接下来,再看一个题目,这次要分组进行,看看哪个组做得又快又好。(课件出示题目)
题目:小明每小时能走12.5千米,从教室去图书馆用了1.5小时,教师距离图书馆多少千米?
①各小组先列出算式
生:各小组在竞争中享受获取知识的乐趣。
答案:12.5x1.5
②现在各小组开始竖式计算,看哪个组计算得快。
解析:
第一步:同学们先来计算:125x15
第二步:数一数因数中总共有几位小数?
因数总共有2位小数,所以积有2位小数。
第三步:把整数乘法的即向前移动3位。
3、师:现在我们来计算一下这一个题目,这次要自己独立完成。
题目:0.75x0.25
解析:
第一步:同学们先来计算:75x25
第二步:数一数因数中总共有几位小数?
因数总共有4位小数,所以积有4位小数。
第三步:把整数乘法的即向前移动4位。
4方法总结
小数乘法计算方法:
1、先计算整数乘法
2、数出因数的小数位数
3、移动小数点
5作业布置
1、计算下列小数乘法:
① 0.87x2.25
② 0.45x3.2
③ 1.4x2.55
④ 3.6x1.8
⑤ 11.2x3.5
解析:
2、如果长方形的长为30px,宽为45px,求出长方形的面积?
解析:
可以列出算式为:1.2x1.8
答:长方形面积为54px?。
课后小结
今天这堂课大家运用知识间的联系,探索出小数乘小数的计算方法,生活中有许多小数乘法的问题,希望你们能用学过的知识去解决。这节课主要为了让同学们掌握小数与小数乘法的计算,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识。并在授课中采用多媒体教学手段,这样学生才能更加清晰的了解小数乘法的计算过程和原理。
板书
第2节小数乘小数
小数乘法计算方法:
1、先计算整数乘法
2、数出因数的小数位数
3、移动小数点
数学教学设计6
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题.
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的'个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3.求基本事件总数常用的方法:列举法、图表法.
数学教学设计7
一、案例实施背景
教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、案例主题分析与设计
本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、案例教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
六、案例教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角( )( ) 角的度数( )( ) 数量关系( )
第二组:同位角( )( ) 角的度数( )( ) 数量关系( )
第三组:同位角( )( ) 角的度数( )( ) 数量关系( )
第四组:同位角( )( ) 角的度数( )( ) 数量关系( )
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21 练一练
1、2及习题5.3
1、3.
⑵(讨论解答)课本P22 习题5.
32、
4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质
1、
2、3.⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的.性质
1、
2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6 .作业。学习与评价: P 2 3 6 ( 选择);P24
7、12(拓展与延伸)。
七、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
数学教学设计8
教学目标:
知识目标:综合应用小数运算,观察物体等知识解决实际问题。
能力目标:培养学生初步的应用意识和解决问题的能力。
情感目标:使学生体会数学的应用价值,并激发学习兴趣。
教学重、难点:
重点:运用知识解决奥运会比赛项目的数学问题,提高计算能力。
难点:灵活解决问题和位置的猜测。
学情分析:
四年级的学生已经具有较强的自主探究能力,而且他们的观察能力、思维能力、表达能力也都相比低年级上了一个新台阶,再加上天性的好奇心,促使他们喜欢去探索知识,喜欢边做、边想、边用的模式来参与学习活动。有兴趣就会有学习的动力,丰富的课堂内容才能吸引他们的目光。
教材分析:
在近三届奥运会比赛中,我国体育代表团均取得了优异的成绩。在数学好玩单元安排“奥运中的数学”这一内容,不仅能使学生综合运用小数运算、估算、观察物体等知识解决实际问题,也使学生深刻体会到数学的应用价值,并能有效激发学生的学习兴趣。通过课前资料的收集,也能让学生从中发现问题、主动交流问题、尝试解决问题。通过个体行动、小组讨论、综合知识运用,真正去体会数学的“好玩”处!
教学环节:
一、欣赏奥运
比一比:欣赏奥运会精彩项目片段,并把自己知道的项目报出来,看谁报的多。
导入课题:奥运中的数学
二、金榜导入,引入学习
1、课件出示近三届奥运金牌榜,引导学生感受国家的体育事业的优秀成绩。
抛出问题:“奥运会中有没有学过的数学知识呢?”
2、介绍田径明星:刘翔,他是2004年110米栏奥运会冠军,欣赏当时夺冠时刻,感受精彩,捕捉数学问题。
问题一 结全前三名的比赛成绩,计算出他们分别相差多少秒?(先回顾知识,后独立完成)“计算进要注意哪些问题呢?”给学生一个知识方向的搜索,回忆并明确所用到的知识。(学生板演,发现问题,对照知识,纠正错误)最后明确:小数的加减,小数点要对齐,也就是相同的`数位要对齐。
问题二 根据上个问题的计算结果,判断以下两副图哪副符合当时的比赛情境(学生先思考,再小组内交流,并总结出判断的方法)。明确:“相差的时间越小,相差的距离也就越小”。
问题三 通过口算算出刘翔的成绩和奥运会记录相差多少秒?巩固学生的小数加减,强化记忆。
3、介绍跳水冠军何冲,欣赏何冲的高难度的跳水动作,感受成绩的来之不易,并公布前五跳的成绩,制造问题。
问题一 最后一跳前,何冲领先秦凯多少分?(通过对信息中落后和领先的理解,让学生体会转化问题的方法,感受数学不同的条件,所用的运算也会有所不同,强化认真审题的习惯)
问题二 结合最后一跳的成绩,用自己的方法去判断三人的名次顺序。(小组合作分析解决问题,说明自己的判断方法,对比发现方法的优劣,感受数学的策略多元化)通过相差分数的累积和领先分数与落后分数的对比,可以快速判断出三人的顺序。
4、认识女奥运冠军郭文珺,通过视频了解比赛规则,感受运动员的强大心理素质和自我控制能力。通过成绩的变化,发现新的数学问题。
问题一 前七枪落后0.2环,请根据八九枪的成绩判断郭落后还是领先?(学生先独立完成,后交流并对比各自方法,发现最优的方法)有的同学选择加总分再相减来判断;有的先观察成绩,找出相同成绩和不同成绩,发现只需计算不同成绩的即可,从而更快更准确的确定结果。
问题二 给出郭最后一枪成绩,判断格贝维拉最后一枪至少打多少环才能夺冠?(先请同学们理解两个问题:一个是怎样才能夺冠?二是至少的意思是什么?学生先小组交流自己的理解再统一认识,对比同学们的见解,确定正确的思路和计算方法)夺冠可以是并列的,所以这个至少就是指格贝维拉要打一个能刚好和郭文珺总成绩一样的环数即可,即最低限度是多少环才能满足并列冠军。结合之前领先0.5环的优势,所以格贝维拉只需打出10.3环即可并冠军。
问题三 格贝维拉最后一枪只打了8.8环,如何确定两人最终相差的环数?(结合跳水问题的经验,学生思考交流完成作答)通过最后一枪的成绩差,再对比之前的相差环数,引导学生正确理解及准确列式。
问题四 感受赛场,判断位置。(学生发挥想象力,利用所学判断结果)
三、体验感悟,升华认识
分享感悟,引导学生重新定位对数学课的认识,提高学习数学的兴趣,发现数学的魅力之处。
数学教学设计9
一、教材分析
本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
二、学生学习情况分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、设计理念
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.
六、教学过程设计
教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结
(一)熟悉背景、引入课题
1.让学生看材料:
材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的`正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。
图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;
如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;
图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).
3.根据对数函数定义填空;
例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理
解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2
(二)尝试画图、形成感知1.确定探究问题
教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质
教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方
法吗?
学生2:先画图象,再根据图象得出性质
教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论
教师:观察图象主要看哪几个特征?
学生4:从图象的形状、位置、升降、定点等角度去识图
教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。
步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,
在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
步骤四:规纳出能体现对数函数的代表性图象
步骤五:作指数函数与对数函数图象的比较2.学生探究成果
(1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。
图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)
数学教学设计10
教学目标:
能熟练地根据抛物线的定义解决问题,会求抛物线的焦点弦长。
教学重点:
抛物线的标准方程的有关应用。
教学过程:
一、复习:
1、抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。
2、抛物线的标准方程:
二、新授:
例1、点M与点F(4,0)的'距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程。
解:略
例2、已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(—3,m)到焦点的距离等于5,求抛物线的方程和m的值。
解:略
例3、斜率为1的直线经过抛物线的焦点,与抛物线相交于两点A、B,求线段AB的长。
解:略
点评:1、本题有三种解法:一是求出A、B两点坐标,再利用两点间距离公式求出AB的长;二是利用韦达定理找到x1与x2的关系,再利用弦长公式|AB|=求得,这是设而不求的思想方法;三是把过焦点的弦分成两个焦半径的和,转化为到准线的距离。
2、抛物线上一点A(x0,y0)到焦点F的距离|AF|=这就是抛物线的焦半径公式,焦点弦长|AB|=x1+x2+p。
例4、在抛物线上求一点P,使P点到焦点F与到点A(3,2)的距离之和最小。
解:略
三、做练习:
第119页第5题
四、小结:
1、求抛物线的标准方程需判断焦点所在的坐标轴和确定p的值,过焦点的直线与抛物线的交点问题有时用焦点半径公式简单。
2、焦点弦的几条性质:设直线过焦点F与抛物线相交于A(x1,y1),B(x2,y2)两点,则:①;②;③通径长为2p;④焦点弦长|AB|=x1+x2+p。
五、布置作业:
习题8.5第4、5、6、7题。
数学教学设计11
许多教育者都有这样的教学感受,好的教学预计是成功的一半,教师在教学中合理设计,加上老师潜移默化的指导对教学成果有阒重要作用。现低教学理念教师教学如何使用教材教学,是对教师教学评价的依据之一,但不能否定教材的编排具有逻辑的意义。因此,如何内化学生或为自己的认识,是要教师在课堂中如何使用教法加工,为学生提供一定的思想素材,开启学生思维的闸门,激发联想,激励参与,主动探索,从而获取新的知识。
一、合理地分析教学内容
一节数学课教学的成败,教学内容的呈现是至关重要的。为此,教师必须能多样地、灵活地呈现教学内容。
在这里特别强调的是对教材内容的数学核心思想的分析,就是希望教师不仅考虑本节课所教的知识,更要考虑到本节课后蕴涵的潜能。如小学数学中知识的迁移:由刚开始的表内乘法→多位数乘多位数的笔算;求一个数的几倍是多少用乘法计算;整数乘法→小数乘法→分数乘法→百分数乘法,每个知识点之间都存在紧密的联系.
二、合理地分析学生情况
教学设计必须是对学生已有的知识基础,学生的生活经验,学习经验,学习困难,学习兴趣及学习方式等进行分析的基础上进行,否则会事倍功半或无法收到预期的效果。因此,老师不能用自己的视界来衡量学生的视界。要想真正了解学生不仅仅依靠经验,有时还需要一定的调研,教师要根据不同的目的做出合理的选择。
三、合理地确定教堂目标
教学目标的陈述必须从学生的角度出发,要看这种教学目标有没
有价值,能否给学生的身心发展带来某种积极的.变化,是否真正符合学生的个性需要。所以说教学目标是为学生的“学”而设计的,教师的“教”是为学生的学习目标达成而服务的。《教学课程标准》以知识与技能,过程与方法,情感民价值等几方面规定了学生应达到的目标,因此,教学目标的确定也要体现数学教育的多方面价值,教学行为的主体必须是学生而不是教师。为此,判断教学有没有效益的直接依据是学生是否有新的收获,而不是教师是否完成了任务。
四、合理地设计教学活动
在设计活动时,要在认真分析学生的基本情况,对教学进行差异化处理。教师:导入→提问→探究(组织学习、交流)学生:动手→独立思考→合作交流→练习等,准备:教具、学具、课件等,要注意的是教学活动是为了完成和达到教学目的而设计的,为此,必须要围绕教学目标来设计。
五、合理地进行教学反思
教学反思是一种有益的思维和再学习活动,是对个人本自身的教学进行批判和反省的过程,一节课下来,静心反思,及时记下得失并进行必要的归类与取舍,思考再交这部分内容时应该如何教学,写出“再教设计”,这样,可以做到扬长避短,精益求精,把自己的教学水平提高到了个新的境界和高度。更重要的是,可以提高课堂教学的有效性,避免无效性教学。
通过教师合理地设计、安排,学生获得了成功的体验,树立一分耕耘,一分收获。教学工作苦乐相伴,我们将本着“勤学、善思、实干“的准则,一如既住,再接再励,把教学工作搞得更好,更出色!
数学教学设计12
教学目标:
1、通过观察、操作、体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
2、通过图形的放缩,结合具体情境,感受图形的相似。
教学重点:目标1、2。
教学难点:目标2。
教学过程:
活动一、创设情境
同学们做了一张贺卡,准备母亲节的时候送给妈妈们,这张贺卡长是6厘米,宽是4厘米。笑笑、淘气、小斌分别在方格纸上画了贺卡的示意图,现在请同学们观察谁画的像。
1、出示图。
2、观察图,同桌互相交流。
3、汇报。
4、小组讨论:为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像有的不像呢?他们是怎么画的?
5、小组汇报
笑笑:我画的图,宽1厘米相当于实际的4厘米,长1、5厘米相当于实际的6厘米。
淘气:卡片的长和宽的比是6:4、也就是3:2,所以,我画的`图长和宽的比也是3:2。
小斌:只要长比宽长一些就行。
6、画的图的长和宽与原来的长和宽有什么关系?
得出:只要长和宽都按相同的比(可以有两个意思,一是图中的长与实际的长的比和图中的宽与实际的宽的比相等,二是图中的长和宽的比与实际的长和宽的比相等)来画,画的图才像。长方形画成较小的长方形,首先可以量出原来的长和宽,再将它们的长和宽缩小相同的倍数,才能画的像。
活动二、画一画
把下面的图放大,比一比谁画得像。
1、理解题意。
2、学生独立完成。
3、小组内交流。
4、汇报,全班交流。
活动三、探究活动
1、学生独立完成。
2、小组交流,汇报。
数学教学设计13
教学目标
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、让学生进一步感知集合图的价值,培养学生用不同的方法解决问题的意识。
3、培养学生善于观察、善于思考、养成良好的学习习惯。
4、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
教学重点
进一步感知集合图的价值,培养学生用不同的.方法解决问题的意识。
教学难点
培养学生善于观察、善于思考,养成良好的学习习惯。
教具
准备课件。
教学过程
教学设计个性化调整或反思
一、创设情境,激趣导入。
师:上节课学习的借助集合图分析问题的方法你学会了吗?有什么感想?
生:用画图的方法解决问题更容易理解。
师:今天我们就一起来看看大家掌握的情况怎么样。
二、探究体验,经历过程。
师:阅读下面的文字,说说你知道了什么》(出示第107页第6题)
生:知道了3个小朋友比赛写出带“春”字的成语的个数分别是多少。
师:读完题,你觉得怎么样呢?
生:这道题的信息很多,有点乱。
师:对于这样的问题,你想怎样分析解答呢?
生:也许画图可以帮助我们分析题意吧。
师:用你喜欢的方法分析理解之后尝试解答。
学生尝试独立解答问题,教师巡视了解情况。
组织学生交流。
求小刚和小佳一共写出多少个成语,首先要找出与这两个人所写成语有关的条件:“小刚写出了15个,小佳写出了8个”,且“小佳写出的8个成语小刚都写出来了”,可以画图表示为......
所以小刚和小佳一共写出的成语个数是15个。
要求小刚和小红一共写出了多少个成语,同样首先要找出与这两个人所写成语有关的条件:“小刚写出了15个成语”,“小红写出了10个”,且“小红写出的成语中有5个小刚也写出来了”。也就是说他们两人写出的成语中有5个是重复的,可以画图表示为......
所以说小刚和小红一共写出的成语个数是15+10-5=20(个)。
……
对于解答正确的学生给予表扬鼓励。
师:通过练习题的解答,你受到了什么启发?
生:面对很多信息时要思考清楚了再列式计算。
三、总结提升。
师:在今天的学习中,你有什么收获?
四、课堂作业。
1、同学们排队做操,小明排在从前数第9个,从后数第7个,小明这一排一共有多少个同学?
2、三年级一班的50个同学中,每人至少喜欢一门课程,喜欢数学的有37人,喜欢语文的有35人,那么这个班级喜欢语文又喜欢数学的有多少人?
数学教学设计14
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的'交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3 中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]= ____________;
-[-(+4)]= ____________;
+[+(+5)]= ____________;
-[+(-50)]= ____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
数学教学设计15
教学设计示例
运用公式法――完全平方公式(1)
教学目标
1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2.理解完全平方式的意义和特点,培养学生的判断能力.
3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.
4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。
教学重点和难点
重点:运用完全平方式分解因式.
难点:灵活运用完全平方公式公解因式.
教学过程设计
一、复习
1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4.
解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n).
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式.
请写出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.
这节课我们就来讨论如何运用完全平方公式把多项式因式分解.
二、新课
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1.
答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) .
(2)不是完全平方式.因为第三部分必须是2xy.
(3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) .
(4)不是完全平方式.因为缺第三部分.
请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y.
例1 把25x4+10x2+1分解因式.
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.
解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2 把1- m+ 分解因式.
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的`相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.
解法1 1- m+ =1-2·1· +( )2=(1- )2.
解法2 先提出 ,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2.
三、课堂练习(投影)
1.填空:
(1)x2-10x+( )2=( )2;
(2)9x2+( )+4y2=( )2;
(3)1-( )+m2/9=( )2.
2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式.
(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4.
3.把下列各式分解因式:
(1)a2-24a+144; (2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2.
答案:
1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.
2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.
(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.
(3)是完全平方式,a2-4ab+4b2=(a-2b)2.
(4)是完全平方式,9m2+12m+4=(3m+2) 2.
(5)是完全平方式,1-a+a2/4=(1-a2)2.
3.(1)(a-12) 2; (2)(2ab+1) 2;
(3)(13x+3y) 2; (4)(12a-b)2.
四、小结
运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.
2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.
五、作业
把下列各式分解因式:
1.(1)a2+8a+16; (2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4.
2.(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.
3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4.(1) x -4x; (2)a5+a4+ a3.
答案:
1.(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)(y+12)2.
2.(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2; (4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2.
3.(1)(mn-1) 2; (2)7am-1(a-1) 2.
4.(1) x(x+4)(x-4); (2)14a3 (2a+1) 2.
课堂教学设计说明
1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.
2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.
【数学教学设计】相关文章:
数学教学教学设计04-15
数学教学设计06-29
数学教学设计05-26
数学《比》教学设计05-08
数学教学设计06-12
小学数学教学教学设计04-17
小学数学教学设计06-27
初中数学教学设计03-03
幼儿数学教学设计02-15
数学游戏教学设计06-12