《平行四边形的面积》教学设计

时间:2023-11-15 08:31:31 教学设计 我要投稿

《平行四边形的面积》教学设计【精华15篇】

  作为一名老师,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?下面是小编为大家整理的《平行四边形的面积》教学设计,希望对大家有所帮助。

《平行四边形的面积》教学设计【精华15篇】

《平行四边形的面积》教学设计1

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  附说课稿:

  一、 教材与与学情分析

  《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

  小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标:

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  教学重点、难点:

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教具、学具准备:

  多媒体课件、长方形纸、剪刀、直尺、

  二、理念设计:

  1、运用信息技术手段,优化数学课堂教学。

  2、体现“数学从生活中来,再回到生活中去”。

  3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

  三、教法、学法

  教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

  学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  四、教学程序

  为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

  (一)复习旧知,导入新课。

  新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

  (二)动手实践,探究发现。

  1、剪拼图形,渗透转化。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

  教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

  2、动手实践,探究发现。

  在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。

  当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的`研究方法是多种多样的,培养了他们的探究意识。

  (三)分层训练,理解内化。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

  第一层:基本练习:

  计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  2、把平行四边形模型拉近,它们的面积发生变化了吗?

  通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  (四)课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

  本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

  当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

《平行四边形的面积》教学设计2

  教学内容:

  北师大版五年级数学上册第四单元(P53——P55)

  教材分析:

  本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

  学情分析:

  二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

  教学目标:

  经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

  掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

  能运用平形四边形的面积计算公式解决相关的问题。

  教学重点:

  通过操作活动掌握平行四边形的面积的计算方法。

  教学难点:

  经历推导平行四边形面积公式的过程。

  教法学法:

  实验探究、推理验证、小组合作学习

  教具准备:

  课件、剪刀、准备平行四边形若干。

  教学过程:

  一、开门见山,导入新课

  今天我们一起来探索平形四边形的面积。(板书课题)

  二、新知探究

  1.分析平行四边形给定的3个数据所表示的意义。

  2.如何求这个平行四边形的面积,说一说你的想法和理由。

  猜想:

  (1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

  (2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。

  3.借助方格纸数一数,比一比

  学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

  要求:

  (1)独立完成

  (2)小组内交流一下你的想法。

  (3)方法展示。

  (4)猜想结果:平行四边形的面积等于底乘高。

  这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

  4.平形四边形如何转化为长方形,验证猜想。

  (提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

  (1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

  (2)是不是沿任意一条高剪开都可以拼成长方形呢?

  动手操作,验证猜想。

  (3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

  生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

  (4)再仔细观察,你还有什么发现?

  生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

  5.怎样求平形四边形的面积?想一想,与同伴交流

  (1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

  (2)你会填吗?

  A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的`面积=( )。

  B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

  6.计算主题图中的平形四边形的面积。

  三、实践应用,巩固与提高。

  1.计算下列图形的面积(抢答)

  (1)底为4厘米,高为2厘米。

  (2)底为5分米,高为9分米

  (3)底为3米,高为7米

  2.判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等( )

  (2)平行四边形底越长,它的面积就越大( )

  3.计算下列图形的面积。(单位:厘米)

  四、课堂小结。

  1.你今天学习了什么?有何收获?

  2.在计算平行四边形的面积时,应注意什么?

  板书设计:

  探索活动:平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学设计3

  教学内容:

  人教版五年级上册教材P87~88例1及练习十九第1、2、3题。

  教材分析:

  《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。

  学情分析:

  学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。

  教学目标:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

  情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。

  教学重点:

  探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教学方法:

  迁移式、尝试、扶放式教学法

  教学准备:

  师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。

  教学过程:

  一、情境导入

  1、谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)

  2、让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

  3、提问:你会算它们的面积吗?

  生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)

  师:非常好!那平行四边形的面积怎样计算呢?

  4、揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)

  二、互动新授

  (一)利用方格,初步探究。

  1。想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?

  生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。

  出示教材第87页方格图以及平行四边形和长方形。

  (引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)

  2。同桌交流方法并完成教材87页的表格。

  3。汇报想法。谁愿意说说你数的方法?

  4。根据填表的结果进行讨论:你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。

  5。小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。

  提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

  6。引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。

  (二)动手操作,深入探究

  1。介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。

  2。活动要求:

  (1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。

  (2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。

  (3)尝试推导出平行四边形的面积公式。

  比一比,那个小组做得又快又好。

  3。汇报交流。

  让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。

  质疑:你们为什么要沿高剪呢?

  生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。

  4。课件演示剪拼过程。

  师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。

  运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。

  5。引导学生小组思考讨论:

  (1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  (2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?

  (3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?

  学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

  6。引导学生利用长方形的'面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)

  追问:要求平行四边形的面积必须知道什么条件?

  学生得出结论:必须知道平行四边形的底和对应的高。

  7、教学用字母表示。

  师:翻开教材自学第88页倒数第二自然段的内容。

  师:你学到了什么?

  生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)

  8。课件演示,加深理解。

  9。小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。

  (三)应用公式,解决问题。

  出示教材第88页例1。

  学生读题,理解题意;独立完成;教师板书。

  三、巩固新知,拓展提升。

  1、计算出下面每个平行四边形的面积。

  4。快速填表。

  5。比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。

  练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。

  四、回顾总结

  师:这节课你学会了什么,有哪些收获?

  五、布置作业:教材第89页练习十九第1、2、3题。

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽S=ah

  ↑ ↑ ↑ =6×4

  平行四边的面积=底×高=24(m2)

  S=ah

《平行四边形的面积》教学设计4

  教学内容:人教版教科书第86—88页

  教学目标

  1、探索平行四边形的面积计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式、会计算平行四边形的面积。

  2、经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展空间观念,提高数学素养。

  教学重点:探究平行四边形的面积计算公式、会计算平行四边形的面积。

  教学难点:通过探究平行四边形的面积计算公式,感受“转化”思想。

  教法学法:自主学习、小组合作、实际操作、观察想象等学习方法,使学生亲自探索,主动发现,让他们学得轻松,学得快乐!

  教学准备:多媒体课件、剪刀、平行四边形纸片、尺子。

  教学过程

  一、复习旧知,导入新课

  1、出示主题图

  师:看,老师这里还有一幅图,大家看它像什么?

  生:像火箭

  师:你能快速地求出它的面积吗?

  生:……

  师:还有没有别的方法?

  生:……

  师:同学们,通过以上计算火箭的面积、,你发现了什么?

  生:……

  师:刚才我们把不熟悉的图形转化成我们学过的图形,我们用学过的方法来解决这种问题叫转化法,以后我们在学习数学当中经常会用到转化的方法。

  二、初次探究,大胆猜想

  师:看,这里有两个花坛,谁来说说他们各是什么形状呢?你说

  生:……

  师:你能准确地比较出它们的大小吗?为了方便比较,我们把它们放在同样大小的方格里,找一个同学来读题,谁愿意来?

  生:……

  师:我们先来数长方形的面积,(出示幻灯片),谁来说一说长方形的面积是多少呢?

  生:……

  师:同意吗同学们?我们再来数平行四边形的面积,先数整格的,再数半格的,大家想一想平行四边形的面积又是多少呢?

  生:……

  师:好,请坐,你能根据以上把下表填完整吗?我们先来填长方形的

  生:……

  师:我们再来填平行四边形的

  生:……

  师:那么通过以上你们又发现了什么呢?

  生:发现了他们的面积相等。

  三、验证猜想,得出结论

  师:同学们,我们刚刚用数方格的'方法求出了平行四边形的面积,如果让你测量一个很大的平行四边形草坪的面积,那么你觉得用数方格的方法怎么样?

  生:不合适,太麻烦了

  师:看来数方格的方法具有局限性,那我们就要想一种合适的计算方法,那么大家想一想能不能把平行四边形转化成我们学过的图形来研究它的面积呢,同学们看合作要求,谁来读一读?

  生:……

  师:大家先来看第一个要求,是来干什么的?

  生:……

  师:再来看第二个要求,是来干什么的?

  生:

  师:现在明白要求了吗?下面以小组为单位,开始……

  师:哪一组愿意上来把你们的结果展示一下?

(两个小组上台演示)

  生一:沿着平行四边形的这条高剪开,把它分成了一个直角三角形和一个直角梯形,把直角三角形向右平移就拼出了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。

  师:还有哪一组有不同方案的愿意上来展示一下?

  生二:沿着平行四边形的一条高剪开,把它分成了两个直角梯形,将左边这个直角梯形平移到右边,就拼成了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。

  师:他们说得都很好,下面我们选择其中一种来演示,我们就选第一种,那么谁愿意来说一说剪拼的过程?

  生:沿着平行四边形的这条高剪开,把它分成了一个直角三角形和一个直角梯形,把直角三角形向右平移就拼出了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。

  师:谁愿意再来说一说剪拼的过程?

  生:……

  师:再找一个人来说一说

  生:……

  师:大家想一想怎样剪才能确保拼成一个长方形呢?

  生:沿着平行四边形的高剪

  师:大家再想一想拼成的长方形与原来的平行四边形有怎样的等量关系呢?

  生:长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。

  师:大家再来看一看以上这两种方法有什么相同点?

  生:都是沿高剪开/拼成的长方形的面积都与原来平行四边形的面积相等,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。

  师:谁来说一说长方形的面积等于什么

  生:长乘宽

  师:所以说平行四边形的面积等于什么?

  生:底乘高

  师:刚才我们把平行四边形转化成长方形求出来平行四边形的面积等于底乘高,那么这就是我们今天学习的平行四边形的面积。(板书课题)我们通常用那个字母表示面积

  生:S

  师:我们用a表示平行四边形的底,h表示平行四边形的高,那么平行四边形的面积公式是什么呢?

  生:S=ah

  师:我们在计算平行四边形的面积的时候必须知道哪些条件?

  生:底和高

  师:接下来我们来看一看例一

  四、解决问题,加深理解

  师:今天我们学习了平行四边形的面积等于底乘高,你能用它解决生活中的数学问题吗?

  出示例1,平行四边形土地的底是6m,高是4m,它的面积是多少?学生读例题,抽生回答。

  师:谁来说一说你是怎么做的?

  生:6×4=24平方米

  师:在计算面积时,要先写字母公式,再进行计算

  师:刚刚你们通过自己动手推导出了平行四边形的面积等于底乘高,接下来有没有信心跟着老师去闯关?

  1、口算。看图求面积

  师:恭喜你们顺利通过第一关

  2、我是小法官

  A、明白面积不能用邻边乘邻边

  B、求长方形的面积时,底和高要相互对应。

  生:错

  师:为什么?

  生:应该用30乘以15

  师:还有没有其他的方法?

  生:还可以用18乘以25

  师:在计算平行四边形的面积时,底和高一定要相互对应

  3、分析思考,得出结论,等底等高的平行四边形的面积相等。

  两条平行线之间的距离处处相等

  师:它们的底相等,我们就说它们等底

  高相等就说它们等高

  结论:等底等高的平行四边形的面积相等(齐读一遍)

  4、趣味思考。

  ......还有吗?(意味深长的笑)

  同学们,今天你们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实呀生活中还有更多的知识等着你们去发现去探索,快快做个生活中的有心人吧!谢谢大家下课

  板书设计:

  平行四边形的面积

  长方形面积=长×

  平形四边形面积=底×

《平行四边形的面积》教学设计5

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=a×h

  S=ah或S=ah

  课后记:

  第二课时

  教学内容:

  平行四边形面积计算的练习(P82~83页练习十五第4~8题。)

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  展示台

  教学过程:

  一、基本练习

  1、平行四边形的面积是什么?它是怎样推导出来的?

  2、.口算下面各平行四边形的'面积。

  (1)底12米,高7米;

  (2)高13分米,第6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:250×780÷10000=1.95公顷,

  再求共收小麦多少千克:7000×1.95=13650千克

  (3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.(1)练习十五第5题:

  1.4厘米

  2.5厘米

  a、你能找出图中的两个平行四边形吗?

  b、他们的面积相等吗?为什么?

  c、生计算每个平行四边形的面积。

  d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  (2)练习十五6题

  让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)

  3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。

  7m

  分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十五第7题。

  四、作业

  练习十五第4题。

  课后记:

  第三课三角形面积的计算

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  理解三角形面积公式的推导过程.

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

  教学过程

  一、激发

  1.出示平行四边形

  1.5厘米

  2厘米

  提问:

  (1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  二、指导探索

  (一)推导三角形面积计算公式.

  1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

《平行四边形的面积》教学设计6

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块平行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自己的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

  (2)、师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

  (板书课题:平行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  (两个图形的面积相等,都是18平方米……) (知识点)

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

  (师出示一个平行四边形纸板,生看图猜测。)

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  (师参与到小组活动中,巡视指导。)

  3、汇报交流

  师:你是怎样做的`呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (电脑显示思考题)

  小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:长方形面积=长×宽

  平行四边形面积=底×高 (知识点)(能力点)

  5、回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

  7、记忆公式

  闭上眼睛记记公式。

  如果要求平行四边形的面积,必需要知道哪些条件呢?

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

  (出示喜羊羊的草地图)(说明格式要求)学生独立完成。

  三、深化运用,加深理解

  通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

  1、算出下列平行四边形的面积 (考查点)

  课件出示图形

  (羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

  2、选一选。(题目见课件) (考查点、能力点)

  (强调:平行四边形的面积=底×底边对应的高)

  你有什么结论?(等底等高的两个平行四边形面积相等。)

  3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

  (考查点、能力点)

  有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

  四、解决问题,应用拓展

  1、小小设计师:

  羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

  2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

  五、总结全课,提高认识

  这节课我们学习了什么知识?是怎么来学会这些知识的?

《平行四边形的面积》教学设计7

  [课程标准]

  探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

  [学情分析]

  学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

  鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

  [学习目标]

  1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)

  2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)

  [评价任务]

  评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

  评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

  [资源与建议]

  1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

  2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

  3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

  4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的.关系,从而顺利推导出平行四边形的面积公式。

  [教学过程]

  一、情境导入

  出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

  师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

  [设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

  二、探究新知

  1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

  (1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

  (2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

  (3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

  生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

  生:我发现平行四边形的面积=底×高

  师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

  [设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

  2、合作交流探究新知

  (1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

  (2)、活动4:动手操作

  以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

  (3)、活动5:学生汇报、交流。

  师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,

  (边演示边说剪拼过程,并贴剪拼图于黑板。)

  师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

  你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

  哪个小组和他剪的不一样?

  师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

  (4)、大屏幕演示不同的拼法。

  (5)、活动6:小组讨论

  师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

  小组讨论:

  a、拼成的长方形的面积和原来平行四边形的面积—————。

  b、拼成的长方形的长与原来平行四边形的底———————。

  c、拼成的长方形的宽与原来平行四边形的高———————。

  (6)学生汇报,教师总结板书:

  师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

  教师板书平行四边形的面积=底×高,

  (7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

  (8)介绍板书字母式。

  师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

  观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

  [设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

  三、实践应用

  活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

  [设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

  四、课堂检测

  1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

  2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

  3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

  [设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

  五、全课小结。

  想一想你这节课学到了什么?

  板书设计:平行四边形的面积

  长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  S=a×h

  =ah

  =ah

《平行四边形的面积》教学设计8

  教学内容:九年义务教育六年制小学数学第九册70页一72页。

  教学目的:

  1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

  2.培养学生初步的逻辑思维能力和空间观念。

  3.结合教材渗透转化思想。

  教学重点:掌握和运用平行四边形面积计算公式。

  教学难点:平行四边形面积公式的推导过程。

  课前准备:投影器、长方形框架、平行四边形纸片等。

  教学过程:

  一、课前谈话:

  师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

  曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?

  二、创设生活情境

  这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗?

  学生自由发言。

  师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)

  三、探究新知

  1、自主探索

  出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

  学生以小组为单位开展活动,教师巡视。

  汇报、反馈:都有结果了吧,哪个小组先来汇报?

  各小组派代表发言。

  2、对比分析

  每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

  3、归纳总结

  你们真聪明,能把没有学过的知识转化成学过的`知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关?

  想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说?

  四、巩固运用

  咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

  1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

  2、P82看第2题。

  3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么?

  五、小结:今天大家学得开心吗?你们都有哪些收获?

  出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么

《平行四边形的面积》教学设计9

  教学内容:

  人教版数学五年级上册第6单元第87-88页。

  教材分析:

  《平行四边形的面积》的教学是在学生初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转的基础上进行的。这部分内容的知识,不仅有利于发展学生的分析能力及转换划归思想,促进学生的空间观念发展,而且也为学习三角形面积、梯形面积等打下良好的基础。

  学情分析:

  在学习《平行四边形的面积》之前,学生已初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转,学生具备了一定的动手操作能力。五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。针对难点因地制宜,结合学生自身的实际情况,动手实践、直观演示法、合作交流;引导学生进行问题探索,通过教学环境的情感渲染,利用情境引出问题,并通过猜想、验证、推导出平行四边形的面积计算公式,使学生在理解的过程中主动的学习,重结果的同时更重过程性的学习,在学习过程中渗透转化的思想,激发学生的创新意识。

  教学目标:

  1.知识与技能:在具体情境中,理解并掌握平行四边形的面积计算公式,能正确计算,并能解决简单的实际问题。

  2.过程与方法:经历数一数,剪一剪,拼一拼的探索过程,培养观察,分析能力,发展空间观念,感悟转化(划归)的数学思想,积累相关活动经验。

  3.情感态度与价值观:感受数学与生活的联系,体会数学的应用价值。

  教学重点,难点:

  教学重点:理解并掌握平行四边形的面积计算公式

  教学难点:理解并掌握平行四边形的面积计算公式,推导出平行四边形的面积计算公式。

  教具准备:

  (1)一些平行四边形卡片

  (2)磁铁

  (3)剪刀

  (4)课件

  教学过程:

  提前将洋葱微课发至家长群,让孩子提前学习,明确学习内容。

  一、创设情境,导入新知

  创设情景:(出示多边形面积主图)从图中你发现了哪些图形?

  提出问题:你会计算它们的面积吗?正方形面积?长方形面积?

  追问:在生活中什么时候要用到计算面积呢?

  预设:比较面积大小、贴瓷砖……

  师:老师也遇到了同样的比大小的'问题,请看,老师把花坛请到了这里(出示87页主图)这两个花坛哪一个大呢?

  【设计意图】由一张生活中常见的多边形面积主图来展开,从学生已有知识生活经验来引导学生发现问题,提出问题、分析问题,最后解决问题,感受数学与生活的密切联系,知道生活中什么时候需要计算面积等,引导学生体会数学的应用价值。最后通过比较哪个花坛大来引出今天要学习探索的平行四边形的面积。

  二、探索新知

  (一)借助方格,初步探究。

  猜想:

  预设1:长方形花坛面积大

  预设2:平行四边形花坛大。

  预设3:不确定,要比两个花坛的面积,可是我们不会求平行四边形的面积

  引入课题:我们今天一起来研究——平行四边形的面积(板书)

  1、回忆一下,我们是用什么方法得出长方形的面积计算公式的?

  预设:数方格

  验证:

  2、在方格上数一数,然后填写下表(一个方格代表1m^2,不满一格的都按半格计算。)拿出练习本,写在练习本上,不用画表格。

  3、提问:谁来数一数,告诉大家你是怎么数的?

  4、追问:有没有什么方法能帮助我们数的快一点呢?

  预设:沿平行四边形的高剪一块,拼到另一边。

  5、这种“一剪,一拼”的方法,数学上称为“割补法”。

  (二)渗透转化,进一步探究。

  1、不数方格,能不能计算平行四边形的面积?

  预设:转化成学过的长方形。

  2、渗透思想:他提到了一个数学学习过程中常用到的一种思想方法“转化”思想。把新知识转化成旧知识。

  3小结:刚才我们是用数格子的方法知道的,如果没有方格……(引导学生)

  (三)观察、猜想、验证深入探究

  1、回忆一下,长方形的面积计算公式是?(板书:长方形面积=长×宽)

  长方形面积和谁有关?

  2、提问:长、宽中任意一个变化会导致面积变化吗?

  由此,你们猜测一下平行四边形的面积可能会和谁有关?

  预设1:邻边(如果很多学生说与邻边有关就分组讨论)

  预设2:底和高

  3、演示:拉动它会有什么变化?什么变?什么不变?(拿着一个可以变动的平行四边形)面积变小了,邻边___?底___?高___?周长___?

  4、小结:可见平行四边形的面积和……有关,那么我们能不能用转化的的方法推导出平行四边形的面积?

  推理:

  光说没有说服力,拿出练习本和事先准备好的平行四边形卡片,把推导过程体现出来。把平行四边形转化成学过的图形。

  学生动手(教师巡视)

  (投影展示)

  提问:你是怎么把平行四边形转化成长方形的?(学生上台展示)

  预设:沿高剪开,把三角形向右平移,再拼成长方形。

  师:条理清晰,通过“一剪,一拼”把平行四边形转化成长方形,这种方法叫?

  对了,割补法,利用割补法转化成长方形就能计算面积了。

  5、(课件动画演示)看看如何将平行四边形转化成长方形。

  (四)合作交流,推导出平行四边形面积

  1、原来的平行四边形和转化后的长方形,它们之间有什么关系?平行四边形的面积怎么求?

  预设:

  2、汇报

  平行四边形的底和长方形的()相等。(板书)底→长

  平行四边形的()和长方形的()相等。(板书)高→宽

  这两个图形的面积()。(板书)平行四边形面积=长方形面积

  3、怎样计算平行四边形的面积?

  预设:平行四边形面积=底×高(板书×)

  (五)渗透符号意识,公式符号化

  1、a表示什么?h呢?

  如果用大写字母S表示面积,用字母a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成?

  预设:S=ah(板书)

  2、要求平行四边形的面积要知道什么?

  3小结:到这里的学习,你们知道了什么?

  【设计意图】本环节充分体现了新知识转化成旧知识的“转化”思想。第一通过引导学生回忆推导长方形面积的方法来计算平行四边形的面积,即借助方格,初步探索平行四边形的面积。,经历剪一剪、拼一拼的探索过程,渗透“割补法”。第二进一步探索,在没有方格的情况下,引导学生“转化”,将平行四边形转化成长方形,新知转化成旧知。第三循序渐进,引导学生观察、猜想、验证,借助可以拉动的平行四边形可以直观的让学生感受到什么变了,什么没变,让学生在理解的基础上学习,递进的学习,逐步推导。第四建立在上一步的基础上发展,通过新课程提倡的合作交流的学习方式进行,找出平行四边形与转化后的长方形的关系,并推导出平行四边形的面积计算公式。最后,公式符号化,发展学生的符号思想。

  三、巩固练习

  1、抛出洋葱微课里的题

  2、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  3、89页第2题(注重底与高对应)计算下面每个平行四边形的面积。

  4、90页第6题

  【设计意图】根据学生掌握知识的规律,针对本课的教学目标,我设计的练习题由浅入深,循序渐进。通过这些练习是为了让学生会运用平行四边形的知识去解决简单的数学问题。在第2题练习中发展创新意识,让学生明白“对应关系”即“底”和“高”对应,引导学生在理解的基础上牢固的掌握知识,能根据具体需要迅速再现出来。

  四、课堂总结

  通过今天的学习你有什么收获?你还有什么疑问?

  【设计意图】课堂总结,让学生说一说收获,还有什么疑问,实现知识的系统小结,是为了学生更好的学习和改善教师教学的重要部分。可以系统的知道学生学到了什么,哪方面还需要巩固。为后续教学提供方向。

  五、作业布置

  六、板书设计

《平行四边形的面积》教学设计10

  教学目标:

  1、知识与技能:

  (1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。

  (2)能运用平行四边形的面积公式解决相应的实际问题。

  2、过程与方法:

  使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。

  3、情感、态度与价值观:

  (1)渗透转化的数学思想方法。

  (2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  教学重点:

  探索并掌握平行四边形面积的计算公式。

  教学难点:

  1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。

  2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。

  教具、学具准备:

  1、多媒体课件、自制教具。

  2、每个学生准备1把剪刀、一张平行四边形纸片。

  教学流程:

  一、创设情境,引入课题:

  师:同学们,今天老师将要和大家一块儿探讨怎样的数学问题呢?首先老师给大家讲一个有趣的故事,大家想听这个故事吗?从前有一个老财主,他感觉自己的年龄越来越大了,身体也一天不如一天了,就决定把自己最好的两块儿地分给他最疼爱的两个儿子。(课件)于是他把左边的这块儿地分给了第一个儿子,把右边的这块儿地分给了另一个儿子,可两个儿子分到地后都不满意。都说我那个老爹呀,真偏心把大的地分给了他,小的留给了我,老财主伤心的落泪了。谁能帮帮他呢?你们有什么好的办法吗?

  生:

  现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)

  师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。

  (通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)

  师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)

  二、探究新知,导出公式:

  1、猜想:

  师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)

  生:

  师:我们发现长方形的长和平行四边形的底都是6米,长方形的宽和平行四边形的高也都是4米,而且它们的面积也相等。那么根据这些数据,我们能不能大胆的猜想一下平行四边形面积公式呢?

  生:

  师:你们是怎么推导出这个公式的呢?

  师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)

  2、验证:

  (1)学生动手操作

  (2)小组演示

  (3)师课件演示

  边演示边说:我们沿着平行四边形的一条高剪开,把它平移到右边,就拼成了一个长方形。我们发现了什么?

  生:

  板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?

  (4)推导过程:(课件显示)

  我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。

  (5)师:刚才我们不仅验证我们的.猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。

  师:下边请同学们想一想如果用字母S表示面积,用字母a和h分别表示底和高,那么平行四边形的面积用字母怎么表示呢?

  师板书:S=ah

  3、面积公式的运用

  课件出示例题:有一块平行四边形的麦田,底是85。8米,高是75米,这块麦田的面积是多少平方米?

  三、巩固发展、实际运用:

  1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)

  2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)

  四、课后延伸:

  师拿出活动的长方形木架,沿对角一拉,变成一个平行四边形,请同学们想想这两个图形的面积还相等吗?它们的周长呢?请同学课后来讨论这个问题好吗?

  五、反思与体会:

  同学们,想一想,这节课你有哪些收获呢?(生)

  师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!

《平行四边形的面积》教学设计11

  教学目标:

  1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。

  2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

  3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)

  教学重点:

  掌握平行四边形的面积计算公式,能准确解决实际问题。

  教学难点:

  理解平行四边形面积计算公式的推导方法与过程。

  教学准备:

  两张格子纸,一张白纸,可变形的平行四边形

  教学过程:

  一、揭示课题:平行四边形(展示课件课本情景图)

  师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?

  生:平行四边形、长方形、圆形......

  师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)

  生:面积(学生回答面积后,马上追问,什么是面积?)

  师:什么是面积?

  生:面积就是一个图形所占平面的大小。

  师:那么我们学过那些图形的面积?

  生:长方形和正方形。

  师:它们的面积怎么求?

  生1:长方形的面积=长×宽

  生2:正方形的面积=边长×边长

  师板书:长方形的面积=长×宽

  师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?

  (设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)

  师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)

  二、新授

  师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)

  生:能

  师:怎么看出来?

  生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。

  生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。

  师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!

  生操作。(拿出1号方格纸,不满一格的都按照半格计算)

  师:看看同学们都是怎么数的?

  生:20个满格,8个半格,一共24个格,面积是24平方米。

  师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?

  (引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)

  猜测一下:平行四边形的面积可能与什么有关?

  生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)

  师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?

  生1:底是6米。

  生2:高是4米。

  生3:6×4=24,所以平行四边形的面积是底×高。

  师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?

  (拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。

  生操作

  出示学生的作品,介绍一下是怎么想的。

  生1:用拼的方法,拼成一个长方形,再数出面积。

  生2:也是拼,剪掉上面的拼下面,剪下面拼上面。

  师:刚才他们都用到了一个动词,是什么?(生:拼)

  师板书:拼

  生4:整块简拼,移到右边。

  师:拼的过程其实也是我们数学当中的平移的过程。

  师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。

  3、出示3号白纸,学生自己画一个平行四边形

  学生操作,小组讨论。

  (此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)

  展示学生作品

  师:这样的平行四边形要怎样计算面积呢?还能数方格吗?

  小组讨论,学生操作剪一剪,拼一拼。

  生1:不沿高剪得

  生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。

  师板书:长方形的面积=长×宽。

  师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?

  师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?

  学生讨论

  生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。

  生2:这两个图形的面积是相等的'。

  师总结:验证成功,平行四边形的面积=底×高

  (汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)

  师板书:平行四边形的面积=底×高

  3、如果用字母S表示面积,a表示底,h表示高

  你会用字母表示平行四边形的面积吗?

  生:S=a×h

  利用公式来计算

  出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。

  拓展练习:

  (1)选择题:平行四边形的底是5米,高是4米,它的面积是()

  A 20米B 20平方米C 18米D 18平方米

  (2)出示图形(强调高和底是相对的)

  (3)画出一个底是3cm,高的5cm的平行四边形。

  师总结:等底等高的平行四边形面积相等,但是形状不一样。

  三、拓展探究

  1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程

  师:那么这个平行四边形在拉成长方形时面积发生改变了吗?

  学生讨论

  学生1:没有改变

  学生2:改变

  学生辩论

  师:周长一样长的平行四边形和长方形,面积不一定也一样。

  四、总结

  这节课我们学习了什么,回顾整堂课的过程。

  用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。

  预知后事,自己分晓。

  板书设计

  新面积不变平行四边形的面积=底×高

  拼数

  已学(转化)长方形的面积=长×宽

  S=a×h

《平行四边形的面积》教学设计12

  教材分析:

  《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。

  教学目标:

  1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

  2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。

  3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。

  教学重难点:

  教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。

  教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  3块平行四边形彩色纸片、三角板、直尺、剪刀。

  教学过程:

  一、创境导入,激发兴趣

  由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自己的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。

  二、多元学习,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的.面积可能与它的什么有关?

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并在小组内交流。

  3、汇报展示

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的`实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  5、利用课件回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah

  7、记忆公式

  如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?

  三、巩固练习,深化运用,

  课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。

  四、课堂总结,深化新知

  最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

《平行四边形的面积》教学设计13

  教学目标:

  1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

  2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。

  3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

  教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

  教学准备:平行四边形卡片 剪刀 方格子

  教学过程:

  一、 创设情境,激趣导入

  师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?

  学生汇报

  师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?

  (多媒体出示一块长方形的地,一块平行四边形的地)

  学生汇报

  师:你们准备怎样解决呢?

  生:分别算出长方形和平行四边形的面积就行了。

  师:怎样才能知道这块长方形地的面积呢? (引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)

  多媒体出示方格和长方形的长与宽,学生求出长方形的面积。

  师:那这块平行四边形面积怎样求呢?

  学生小组交流

  师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)

  二、动手实践,探索新知

  学生汇报,教师引导:

  1、 数格子求平行四边形的面积

  (多媒体出示格子,并说明一个方格表示1平方厘米)

  师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。

  学生汇报,得出平行四边形的面积。

  师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)

  引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  2、 割补法求平行四边形的面积

  学生猜测

  师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。

  学生动手实践,合作交流。

  学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件演示剪——平移——拼的过程。

  师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:

  1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?

  2、拼出的长方形的`长和宽与原来的平行四边形的底和高有什么关系?

  3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  学生汇报,教师归纳:

  经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

  师:现在谁能用一句话概括出平行四边形的面积?

  学生汇报,教师板书:

  此主题相关图片如下:

  如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?

  s=a×h

  师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  三、 练习深化,巩固新知

  1、计算下列图形的面积。(单位:cm)

  此主题相关图片如下:

  2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?

  此主题相关图片如下:

  3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

  此主题相关图片如下:

  四、知识应用,总结评价

  师:生活中还有哪些地方应用到我们今天所学的知识呢?

  学生交流

  师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?

  学生交流。

《平行四边形的面积》教学设计14

  教学目标:

  1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

  2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

  重点、难点:

  教学重点:掌握平行四边形面积计算公式。

  教学难点:平行四边形面积计算公式的.推导过程。

  教学准备:

  教具准备:多媒体课件,平行四边形的图形。

  学具准备:剪刀、平行四边形纸片。

  教学过程:

  一、情境导入

  1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

  2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

  通过交换土地的想法揭示课题《平行四边形的面积》

  【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。】

  二、自主学习

  1.剪一剪,拼一拼。

  师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

  2.探讨联系

  师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

  (1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

  (2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  (3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

  3.推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

  三、巩固练习

  师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

  【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

  四、课堂小结

  这节课你有什么收获?

  【设计意图:使学生回顾、梳理本节课的学习内容。】

《平行四边形的面积》教学设计15

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81

  教学目标:

  1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:掌握平行四边的面积计算公式,并能正确运用。

  教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学方法:动手操作、小组讨论、启发、演示等教学方法。

  教学准备:

  1. 平行四边形卡纸

  要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:

  2. 剪刀、三角尺、文具(铅笔、橡皮等)

  3. 板贴

  文字为:“平行四边形的面积”;

  “长方形的面积=长×宽” “平行四边形的面积=底×高” “S=ah”;

  “平行四边形的面积=相邻两边的乘积”

  教学过程:

  教学

  环节

  教师活动及教师语言

  学生活动及学生语言

  课件设计

  复习导入

  探索新知

  巩固练习

  小结

  师:同学们,你们好!很高兴又能和大家一起探讨有趣的数学问题了!

  那么今天聪聪将带我们去什么地方探讨怎样的数学问题呢?(课件:出示课本P79主题图)

  师:仔细观察找一找图中有哪些学过的图形?

  师:好,下面谁来说一说你找到了哪些学过的图形?

  (教师随着学生的回答点击课件相应的画面)

  师:你们知道这两个花坛中哪个面积大吗?

  师:那么,谁的想法正确呢?我们一起来验证一下,好吗?

  请大家看屏幕。(点击课件,边点击边说)

  师:我们把这两个花坛画到纸上,用数方格的方法数数看。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。数一数,它们的面积各是多少?

  师:下面请同学们打开书第80页,先独立思考并数一数,然后再和同桌互相交流。

  师:好,谁来说一说你是怎么数的。

  (师随生说点击课件)

  师: 哦,你们数的结果是都是24平方米,说明……

  也就是……

  (一生举手,老师示意其发言)

  师:这个问题提得很好,那平行四边形的面积公式是什么呢?这就是我们这节课要研究的内容。

  (出示课题)

  师:下面请同学们继续观察这两个图形,并完成课本第80页下方的表格。完成后想一想,除了面积相等外,它们还有什么关系呢?

  师:谁来汇报一下你填的结果?

  (师随学生汇报点击课件,补充表格)

  师:通过这个表格,你们有什么发现呢?

  师:大家同意吗?

  那谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法?

  (教师板贴:平行四边形的面积=相邻两边的乘积)

  师:那这个猜想对不对呢?请大家想办法验证验证。

  师:验证完了吗?

  师:这个猜想对吗?

  师:那谁来说一说你是怎样验证的?

  师:哦,我听明白了。你是这样验证的。(点击课件,演示过程)你画了这样的两个平行四边形,它们的底边相等,与底边相邻的边也相等。那大家看它们的面积相等吗?

  (点击课件)那这样呢,它们的面积相等吗?

  (点击课件)这样呢?

  师:同学们,你们也是这样验证的吗?

  师:看来,这个猜想(指黑板)不正确(在板贴公式的等号上画上斜杠)。那谁还有不同的猜想呢?

  (教师板贴)

  师:能说说你的理由吗?

  (师在刚才贴的上面贴上长方形面积公式)

  师:那这个猜想到底对不对呢(在平行四边形面积公式的等号上方画上问号)?请大家借助手中的平行四边形卡片、剪刀等学具想办法验证验证。

  师:验证完了吗?

  师:谁愿意把你的验证方法说给大家听听?

  师:你为什么想到这样转化?

  师:那你接着说说是怎样把平行四边形转化成长方形的。

  师:哦,这位同学是这样(点击课件)沿着平行四边形的一条高剪开,把平行四边形转化成一个长方形。那谁能说说,平行四边形转化成长方形后,什么变了?什么没变?

  师:非常正确!转化后,长方形的长与宽分别与平行四边形的底和高有什么关系?(师随生回答在黑板上的公式间标上对等关系。)

  师:那现在你们知道平行四边形的面积怎样计算吗?

  师:不错,这样我们就验证了平行四边形的面积公式=底×高(指黑板,擦去等号上的“?”号)

  师:刚才这位同学是把平行四边形转化成长方形来验证的。不错,谁还有不同的方法?

  (师随生说点击课件,依次呈现转化图中右侧的转化过程)

  师:大家听明白了吗?

  师:他们都把平行四边形沿着一条高剪开(点击课件),将平行四边形转化成一个长方形再进行验证的。

  师:(小结)(点击课件)看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

  刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,大家都值得表扬。

  师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?

  (师出示板贴“S=ah”)

  师:知道了平行四边形的`面积公式,我们就可以利用它方便地计算平行四边形的面积了。(出示例1)这道题是书上81页的例1,请大家做一做。

  谁来说一说你是怎么做的?

  师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

  师:不错,只要知道它的一组底和高就能求面积了。

  师:那我们接着再来看一道题(点击课件)你能求出下面平行四边形的面积吗?这就是课本第82页的第2题。请大家在书上完成。

  师:谁来说一说你是怎样求的?

  (师随生说点击课件。)

  师:大家同意吗?

  师:下面我们继续看这两个平行四边形,(出示书P83(5)题目),仔细观察,想一想它们的面积相等吗?算一算它们的面积各是多少?这就是书上83页的第5题,请大家先独立思考,再两人一组讨论、交流自己的想法。

  师:讨论完了吗?谁来说一说你是怎么解决这一问题的? (根据学生回答出示课件)

  师:真不错!老师也是这么想的!可以说等底等高的平行四边形的面积相等,大家同意这种说法吗?

  师:运用这节课我们所学的知识,我们还可以解决生活中的一些实际问题。请看屏幕。(点击课件)这是我们书上82页的第4题,请同学们一起完成吧。

  师:谁来说一说你是怎样解决这一问题的?

  师:你完成得很好,在解决问题时也注意了面积单位的变化!

  师:下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?

  师:看来,大家的收获真不少。只要大家勤动手,勤思考,就一定会学到更多的数学知识,也会变得越来越聪明!

  好,今天这节课我们就上到这里,同学们再见!

  生(齐):老师好!

  学生观察、思考。

  生1:斑马线上有长方形,地砖上有正方形。

  生2:房顶上有三角形,左边的花坛是长方形的,右边的花坛是平行四边形的。

  生3:车窗是梯形的。

  生4:车轮是圆形的。

  生1抢先站起来:长方形的面积大;

  生2起来反驳:平行四边形的面积大;

  生3:我认为长方形和平行四边形的面积一样大。

  学生独立思考后,互相交流。

  生1:长方形每行有6格,一共有4行,面积就是6×4=24(平方米);

  生2:平行四边形整格的有20个,半格的有8个。不满一格的按半格计算,平行四边形的面积是

  20+8÷2 = 24(平方米)。

  生(齐):平行四边形的面积和长方形的面积同样大。

  生(齐):两个花坛的面积同样大。

  生2:我觉得长方形的面积不用这样数。我们已经学过了长方形的面积计算公式,只要数出长和宽,直接计算就可以了。

  生3(站起来说):老师,我有一个问题,平行四边形的面积是不是也有计算公式呢,如果有就方便了。

  学生填写表格,并思考。

  生1:平行四边形的底和长方形的长都是6米;平行四边形的高和长方形的宽都是4米,长方形的面积和平行四边形的面积都是24平方米。

  生2:平行四边形的底与长方形的长相等,高与长方形的宽相等,它们的面积也是相等的。

  生(齐):同意!

  生1:长方形的面积公式是长乘宽,也就是相邻两边的乘积,所以我认为平行四边形的面积公式也应该是相邻两边的乘积。

  生集体验证。

  生(齐):验证完了。

  生(齐):不对。

  生1(举起练习本):我画了这样两个平行四边形(如右图),它们的底边相等,与底边相邻的边也相等。如果面积公式是相邻两边相乘,面积应该是相等的,但是一眼就能看出它们的面积并不相等。所以这个猜想不对。

  生(齐):不相等。

  生(齐):不相等。

  生(齐):不相等。

  生(齐):是的。

  生2:我认为平行四边形的面积公式应该等于它的底乘高。

  生2:因为我们刚才填表格时,发现这个长方形的长和这个平行四边形的底相等,长方形的宽又和这个平行四边形的高相等,它们的面积也相等。而长方形的面积等于长乘宽,所以我想平行四边形的面积等于底乘高。

  学生分组操作,教师巡视。

  生(齐):验证完了。

  生1:因为我们刚才发现底和长方形的长相等、高和长方形的宽相等的平行四边形面积和这个长方形的面积相等。我就想到了把平行四边形转化成长方形。

  生1(从投影仪演示):我先从平行四边形的一个顶点画了一条高,这样剪出了一个直角三角形和一个直角梯形,把平行四边形转化成了长方形。

  生2:形状变了,面积没有变。

  生3:转化后的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  生1:知道。因为长方形的长与原来平行四边形的底相等,宽与原来平行四边形的高相等,而长方形的面积=长×宽,所以,平行四边形的面积=底×高。

  生2:我也同意平行四边形的面积等于底乘高。

  生1(投影以上演示):我的方法和××同学的差不多。但我是这样验证的:我画出了平行四边形的一条高,沿这条高把它剪成两个直角梯形,把一个直角梯形移到另一边,正好拼成一个长方形。

  生(齐):听明白了。

  生(齐):S等于ah。

  生1:平行四边形的面积计算公式是底乘高,这个平行四边形的底是6米,高是4米,所以它的面积就是6×4=24平方米。

  生1:平行四边形的一组底和高。

  学生独立完成。

  生1:我先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。结果是××平方厘米和××平方厘米。

  生(齐):同意!

  学生先独立思考,在课堂练习本上计算,再两人一组讨论、交流。

  生1:这两个平行四边形的底相等,高也相等,因此它们的面积肯定相等。算式是1.4乘2.5等于3.5平方厘米。

  生(齐):同意!

  学生独立在课堂练习本上练习。

  生1:我先求出麦田的面积为250×84=21000(平方米)=2.1(公顷),再求14.7÷2.1=7(吨)

  生1:我们用转化的方法推导出平行四边形的面积公式。

  生2:我知道了平行四边形的面积公式是S=ah 。

  生3:我会用平行四边形的面积公式解决一些实际问题。

  生4:我知道了等底等高的平行四边形面积相等。

  生(齐):再见!

【《平行四边形的面积》教学设计】相关文章:

平行四边形的面积教学设计12-09

《平行四边形面积》教学设计07-02

平行四边形面积教学设计04-09

《平行四边形的面积》教学设计02-25

平行四边形的面积教学设计12-09

平行四边形面积教学设计04-10

《面积与面积单位》教学设计06-01

平行四边形的面积优秀教学设计12-08

平行四边形的面积公式教学设计11-05

苏教版平行四边形的面积教学设计12-08