《体积单位》教学设计

时间:2024-08-04 11:21:19 教学设计 我要投稿

《体积单位》教学设计

  作为一名专为他人授业解惑的人民教师,编写教学设计是必不可少的,借助教学设计可以促进我们快速成长,使教学工作更加科学化。一份好的教学设计是什么样子的呢?下面是小编收集整理的《体积单位》教学设计,希望对大家有所帮助。

《体积单位》教学设计

《体积单位》教学设计1

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。教学准备:

  体积是1cm的小正方体,容积是1dm的小正方体,多媒体课件按照课前准备要求摆放好学习用品,然后坐端正,准备上课。请学生把正方体放在小组桌子中间、其它学习用品放在左上角教学过程:

  一、复习回顾,导入新课

  师:上课,同学们,马老师了解到咱们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。

  师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)师:(读题提问)常用的体积单位有哪些?(生齐答)师:(继续提问)容器内的液体量一般使用哪些单位?

  33(生齐答)师:还有补充吗?(生思考后①回答正确,师,表扬,思考真全面,重复说;②回答不出来,师提示:如果液体的量比较大,比如游泳池、蓄水池中的水?)

  师:(读题,举例说明1m,1dm,1cm分别有多大)

  生:举例说明,(每个举例两、三个)师:这个例子很恰当,你真聪明,直接拿了桌面上的物体

  师:我们接着来看填一填的答案。师读题生:10cm、10dm。

  师:也就是说,相邻长度单位间的进率是()生:10

  师:接着来看,应该填多少生:100

  师:相邻面积单位间的进率是()生:100

  那么,在猜一猜中,你填的是多少?生:1000

  师:确定吗?生:确定

  师:没有猜不是1000的吗?生:没有

  师:那它们间的进率是不是1000呢,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。到此大约6分钟

  二、自主探究,获取新知师:同桌两人合作,一起观察、分析课前准备的正方体,怎样能够说明1立方分米=1000立方厘米,听明白要求了吗?开始吧(音乐播放,学生探索大约5分钟)

  师:哪位同学来说说你们探索的结果?生举手师:进率是1000吗生:是

  师:说说你的理由,生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,可以放入1000,所以1立方分米=1000立方厘米。

  师:能不能说说可以怎样放?

  生:一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,所以就有1000个,师:听明白了吗?

  哪位同学再来说一说,还有同学不明白,谁再来说一遍,生复述

  师:由于受时间和条件的限制,我们不能一个个摆,所以老师用课件演示一遍摆的过程,老师操作,大家一起来数一数。

  师:进率是1000吗,生:是师:说说你的理由

  生1:(师提示,拿着手中的正方体)棱长1分米的正方体,体积是1分米×1分米×1分米=1立方分米;棱长10厘米的正方体体积是10厘米×10厘米×10厘米=1000立方厘米。由于1分米等于10厘米,所以1立方分米和1000立方厘米只不过是单位不同,表示的正方体的大小是相同的。生2:1分米等于10厘米,所以这两个正方体是一样的,师,能不能说的完整一些,生3:……生4:……

  师:你分析得真棒,听明白的举手,再请一位同学来复述一遍。(如果没有师逐步提示)这两个正方体的什么是一样的生:棱长是一样的,师:所以体积也是相等的,棱长1分米的`正方体体积怎么计算生;1×1×1=1立方分米;

  师:棱长10厘米的正方体,体积怎么计算生:10×10×10=1000立方厘米

  而他们的体积又是相等的,所以1立方分米等于1000立方厘米。师:我们也可以通过计算分析的方法来研究它们之间的进率,明白了吗?师:还有别的方法来说明进率是1000吗?此过程5分钟

  师:这是1立方厘米的正方体,这是容积是1立方分米的正方体,我们现在来摆一摆。

  师生一起数:1、2、3……10

  师:现在是1排共10个了,我们接着摆师生一起数:20、30、40……100

  师:现在是一层一共100个了,我们接着摆师生一起数:200、300……1000

  师:正好1000个,这样就验证了大家的猜想是正确的。师:马老师有一个问题,在前面的学习中我们学习了升和立方厘米的关系,毫升和立方厘米的关系,现在你知道升和毫升的关系吗?

  生:1000,师:说说你的想法

  生:1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升。

  师:你的逻辑推理能力真厉害,大家同意吗?

  师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000还有哪一个体积单位我们还没有研究呢?生:立方米

  师:好的这一个问题就交给你自己来解决了,请你独立解决课堂学习卡中的第二项,独立探索

  (学生独立探索)

  老师看大部分同学都完成了,我们一起来回答吧,师读题,生填空

  师:这样大家得出了立方米和立方分米之间的进率,太棒了下面我们来小结一下

  也就是说相邻的体积单位间的进率都是1000,一定是相邻的体积单位,还有升和毫升的进率也是1000,下面请你根据所掌握的知识完成课堂学习卡的第三项,填表

  生:汇报答案

  师:这就是我们这节课要掌握的第一个知识,体积单位间的进率,具备了这一知识,我们就可以进行体积单位间的换算,板书(的换算)。

  三、巩固练习,应用新知请大家独立完成师读题,生汇报

  生5000,师:怎样得到5000的生:5×1000生1350,师:怎样得到1350的,生:1.35×1000生1200或者1200000,师:到底是多少呢?生讨论得出1200000

  生2.8,师:怎样得到2.8,生:2800÷1000生0.72,32.5师:怎样得到

  师:能不能用自己的话总结一下单位换算到额规律生尝试总结,汇报

  师:展示小结,建立认知结构

  师:看来同学们掌握的真不错,还有没有不明白的?师:我们来解决一个生活中的实际问题先猜一猜,买哪种瓶装的比较划算?生:大瓶的,师:说说你猜测的依据

  到底是不是呢?请你在练习本上来具体算一算,再进行比较生:列算式进行比较

  师巡视,寻找不同方法的同学,到前面进行展示。师:哪位同学看明白了这种方法,点名来讲一讲生讲解、不能讲解的师逐步提示讲解。师:老师把以上几种方法中常用的两种总结如下,我们一起来看一看方法1:比较每毫升牛奶的价钱方法二比较每元钱可以买牛奶的量

  四、课堂小结,回顾新知

  通过今天的学习,你有哪些收获,谈一谈生:进率,体积单位的换算

  师:有关今天的学习还有什么疑问吗?五,布置作业

  老师这里有一个问题留给大家思考。

  电视机包装箱的长是60米、60分米,还是60厘米?宽和高呢?箱子的体积是多少?

  好今天这节课我们就学习到这里,下课!

《体积单位》教学设计2

  【教学目标】

  知识技能:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  数学思考:渗透类比思想,在观察、操作的过程中,进一步发展空间观念。

  问题解决:会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握相邻两个单位间的进率。

  情感态度:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中相关的实际问题。

  【教学重点】观察、操作中会进行体积、容积单位之间的换算。 【教学难点】推导体积单位间的进率和建立相应的空间观念。 【教学准备】课件、1dm3的正方体盒子、棱长为1厘米的正方体模型。

  【教学过程】

  一、复习导入

  1、复习体积和容积的概念。

  (1)说说常见的长度单位的名称,以及相邻两个单位的进率。

  (2)说说面积单位的名称,以及相邻两个单位之间的.进率。 2、1平方分米=100平方厘米想想是怎么推导出来的?

  3、揭示课题:这课我们学习相邻体积单位间的进率。

  二、自主探索,验证猜测

  1、我们认识的体积单位有哪些?板书:立方米立方分米立方厘米

  提问:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)

  2、究竟哪种猜想是正确的呢?我们一起来验证一下。

  棱长为1dm的正方体盒子中,可以放多少个体积为1cm3的小正方体呢?把你的想法在小组内交流一下,然后摆一摆,算一算。(小组讨论、拼摆,推导相邻体积单位之间的进率,教师巡视,加以指导)

  3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。

  ②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。

  (电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。

  ④口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米

  4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

  ①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。

  a.计算小正方体的个数;b.计算体积;c.1dm3=1000cm3,得到相邻的单位分米3和米3之间的进率是1000,即1m3=1000dm3.(板书:1立方米=1000立方分米)②口头回答:

  2立方米=?立方分米。 9000立方分米=?立方米

  5、补全表格,继续填写:

  单位名称

  相邻两个单位间的进率长度面积体积

  ①总结体积单位以及它们之间的进率

  ②说说它们分别是计量物体的什么的?③怎么来记忆它们相邻单位之间的进率?

  三、巩固深化

  1、出示书第45页的“练一练”第3题。学生先独立完成。交流你是怎样想的。

  小结:把高级单位化成低级单位,要用高级单位的数乘进率(小数点向右移动三位);把低级单位化成高级单位,要用低级单位的数除以

  进率(把小数点向左移动三位)。

  2、辨别

  有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米他换算得对吗?(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)

  3、下面每一组数中都有一个数与其他数不同,请找出它!1.02m

  1020dm

  10200L

  1020000cm

  5046dm

  5.046m

  5046000cm

  5046ml

  4、课本P45第2题。

  鼓励学生通过观察得出长方体的长、宽、高,再应用公式进行计算。

  5、棱长为2m的正方体盒子中,可以放多少个棱长为2dm的小正方体?

  让学生先想象一排可以摆几个,一层可以摆几排,共可以摆几层。

  6、课本P45第4题。

  7、课本P45第5题。

  四、课堂总结。

  通过这节课的学习,你有什么收获?【板书设计】

  体积单位的换算

  1分米3 = 1000厘米3

  1升= 1000毫升

  1米3 = 1000分米3

  1m3 = 1000 dm3

《体积单位》教学设计3

  这部分内容教学相邻体积单位间的进率,是在学生认识了体积单位,学习了长方体、正方体体积计算后,进行教学的。让学生根据进率进行相邻体积单位的换算。在教学中让学生通过计算,探索发现相邻两个体积单位间的进率。教材通过两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算他们的体积。根据体积单位的定义:棱长1分米的正方体,体积是1立方分米,第一个正方体的体积就是1立方分米。通过计算,棱长10厘米的正方体体积是1000立方厘米。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,放手让学生根据前面探索中得到的经验自主进行推算。

  [教学重点、难点]:体积单位间的进率和单位之间的互化。

  [教学目标]

  1、了解并掌握体积单位间的进率。

  2、理解并掌握体积高级单位与低级单位间的化和聚。

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

  [教学过程]

  一、知识准备

  1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)

  2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?

  3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。

  4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)

  板书:

  长度单位

  1米=10分米

  1分米=10厘米

  面积单位

  1平方米=100平方分米

  1平方分米=100平方厘米

  质量单位

  1吨=1000千克

  1千克=1000克

  液体体积单位

  1升=1000毫升

  5、猜想今天我们学习的相邻体积单位间的进率可能是多少?

  6、提炼猜想,为研究作好必要的准备。

  学生出现的猜想:1立方米=1000立方分米

  1立方分米=1000立方厘米

  二、实践探究、学习新知

  (一)探究立方分米与立方厘米间的进率

  1、指导学生分组进行探究,出示自学纲要:

  ①棱长1分米的正方体的体积是多少?

  ②棱长10厘米的正方体的体积是多少?

  ③1立方分米与1000立方厘米,哪个大?为什么?

  2、学具提供:

  ①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。

  ②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。

  3、交流学习结果,分组汇报:

  因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米

  10厘米×10厘米×10厘米=1000立方厘米

  所以:1立方分米=1000立方厘米

  4、让学生在回顾一下思维的过程,再说说自己的理解。

  (二)独立探究立方米与立方分米之间的进率

  1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率

  2、用什么方法可以验证自己的想法是正确的呢?

  3、学生自己尝试解决问题

  4、交流各自的思维过程:

  棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)

  5、小结:相邻的两个体积单位之间的进率是1000。

  6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

  7、完成书上31页练习七的第1题

  让学生独立完成填表,让学生联系填表的.过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。

  (三)完成书上30页练一练

  1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。

  2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。

  3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。

  三、解决实际问题,巩固所学方法

  1、完成31页第2题

  让学生先审题,观察这一组题目有什么特点?在解决的过程中要突出面积单位换算与体积单位换算的区别,还可以让学生认识到:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。

  2、完成31页第3题

  让学生独立完成这一题。说说自己的思考的过程。帮助学生巩固方法,形成技能。

  3、完成31页第4题

  让学生在练习中回顾升与毫升的关系,进一步掌握升、毫升与本单元所学的立方分米、立方厘米的关系。

  四、全课总结

  今天的学习中你有什么收获?学到了什么?还有哪些疑惑?

《体积单位》教学设计4

  教学目标:

  1、通过实践操作,使学生理解体积的含义,建立体积的概念。

  2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。

  3、通过学生的动手实践,加强学生的空间观念。

  教学重点:形成体积的概念和掌握常用的体积单位。

  教学过程:

  一、依据预习提纲,自主学习。

  1.什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)

  3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?

  4.长方体的体积公式是什么?

  5.正方体的体积公式是什么?

  6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  7.讨论长方体和正方体的体积计算方法是否相同.

  二、探索研究,交流展示。

  1.故事引入:出示主题图:乌鸦喝水的故事。

  自由汇报:乌鸦是怎样喝到水的?为什么?

  2.学生实验:

  取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)

  3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?

  不同的物体所占空间的大小不同。

  4.体积概念的.引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)

  加深理解:

  三、体积单位的认识:(学生先看书自学,再汇报交流。)

  1.我们已经学过哪些长度单位和面积单位?

  2.出示两个长方体:怎样比较这两个长方体体积的大小呢?

  3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

  介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。

  4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。

  我们规定:棱长是1厘米的正方体的体积是1立方厘米。

  1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。

  ②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)

  1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)

  1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。

  我们生活中,哪些物体的体积大约1立方米?

  5.练习:

  (1)完成P40“做一做”T1。

  说一说分别是用来计量什么的单位,它们有什么不同?

  长度单位、面积单位、体积单位的联系与区别。

  (2)完成P40“做一做”T2。

  让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。

  三、反馈检测

  1.

  2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  教学设计:

  体积和体积单位

  常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。

  棱长是1厘米的正方体的体积是1立方厘米。

  课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。

《体积单位》教学设计5

  教材分析:

  这部分内容是在学生已经掌握了长方体和正方体体积的计算方法和认识了体积单位的基础上举行教学的。教材通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系,并通过图示,引导学生推出体积单位之间的进率。

  教学方法:

  针对以上内容,我准备通过学生的计算、比较、分析、归纳来得出相邻体积单位之间的进率,突出学生的自主探索学习。

  教学目标:

  (1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。

  (2)过程与方法目标:在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。

  (3)情感与态度目标:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。

  教学重点:

  使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。

  教学难点:

  通过计算、比较、分析、归纳,使学生能探究出相邻体积单位间的进率是1000。

  教学过程:

  一、复习导入:

  1、复习一般长度、面积单位间的进率:

  1米=分米1分米=厘米

  1平方米=平方分米1平方分米=平方厘米

  2、相邻长度单位、面积单位间的进率是多少?我们在学习面积单位间进率的时候是通过怎样的方法来学习的?

  学生相互说说。

  3、我们已经认识了哪些体积单位?它们分别是怎样定义的?

  学生回答问题。

  二、探究新知:

  1、出示一个体积1立方分米和一个体积1立方厘米的模型,提问:1立方分米里有多少个1立方厘米呢?

  2、师生研究:1立方分米是一个棱长1分米的正方体的大小。同样一个正方体,把1分米改写成10厘米,那么它的体积是多少立方厘米呢?

  学生计算:=1000(立方厘米)

  比较:同样一个正方体,它的'体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?

  (学生比较总结出:1立方分米=1000立方厘米)

  3、用同样的方法总结出:1立方米=1000立方分米

  4、你能用一句简洁的话来概括吗?

  (师生交流总结:每相邻两个体积单位之间的进率是1000。)

  5、比较相邻长度单位、面积单位、体积单位之间的进率关系:

  名称图形类型进率

  长度单位平面图形10

  面积单位平面图形1010=100

  体积单位立体图形=1000

  通过比较,使学生进一步明确体积单位间的进率的探索方法,加强学生的理解。

  三、解决问题:

  1、我们已经学习了小数和复名数,从高级单位、低级单位之间的转化是怎样进行的?

  (学生相互说说)

  2、已知:1立方分米=1000立方厘米,1立方米=1000立方分米,那么:1立方分米=立方米,1立方厘米=立方分米。

  3、教学例1、2。

  组织学生进行自主学习研究,集体交流解决的方法。

  (学生有了名数之间转换的方法,因此可以适当的突出学生学习的主体作用,让学生来交流解决问题,提高学生运用旧知识解决新问题的能力。)

  4、教学例3:

  组织学生先自主读题,并进行仔细审题,交流题目的意思。说出有哪些要注意的地方?

  适当培养学生的分析能力,养成仔细审题的良好习惯。

  学生独立解决可能有两种方法:

  (1)先算出用立方米作单位的体积,再改写成立方分米作单位。

  (2)先把米作单位的数改写成分米作单位的数,再计算出体积,就是立方分米作单位了。

  (对于这两种方法,组织学生进行比较,可以进一步验证相邻体积单位间的进率是1000,并发展和提高学生解决问题的能力。)

  四、巩固练习:

  1、合理搭配:

  5平方米500立方分米6780立方厘米立方米

  5立方分米500平方分米8500立方分米

  立方米立方米立方米立方分米

  2、判断题:

  (1)两个体积单位之间的进率是1000。

  (2)棱长6厘米的正方体的表面积和体积相等。

  (3)一个正方体的棱长扩大3倍,表面积和体积都扩大9倍。

  (4)平方分米与50立方厘米一样大。

  3、在括号里填上适当的单位名称:

  一个粉笔盒的体积约是。

  一台洗衣机的体积大约是340。

  摩托车每小时行约30。

  一张纸的面积约是6。

  4、选择:

  (1)、与立方分米相等的是。

  A:7500立方厘米

  B:立方米

  C:立方米

  (2)、正方体的棱长是a,表面积是,体积是。

  A:a2 B:6a2 C:a3

  (3)一块长方体钢材,长米,宽3分米,高2分米,体积是立方分米。

  A:2400立方厘米

  B:立方米

  C:24立方分米

  (4)一个长方体的盒子,长分米,底面积是16平方厘米,体积是立方厘米。

  A:8立方厘米B:80立方厘米C:立方分米

《体积单位》教学设计6

  教学目标:

  1.使学生感悟体积的空间观念,建立体积概念。掌握常用的体积单位的意义。学会用体积单位来描述物体的大小。能合理估计物体的体积的大小。

  2.通过观察、思考、探究、交流等学习活动,让学生经历知识的形成过程,体验和感悟空间观念。

  3.让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识。

  重点难点:

  形成体积的概念,理解和掌握常用的体积单位。建立空间观念、形成体积概念。

  教学准备

  1.教师准备:课件、2个大小一样的杯子、米、1立方米的实物架、2块大小不同的积木、2个体积差不多大的正方体和正方体、火柴盒20个、1立方厘米的小立方体、1立方分米的立方体。

  2.学生准备:每人4-5个1立方厘米的小立方体、1立方分米的立方体,直尺、奶箱子。

  教学过程

  一了解学生原有知识情况。

  1今天的数学课,我们要学习的内容是体积和体积单位。  2关于体积和体积单位你都知道些什么?

  根据学生汇报,相应板书。

  3看来,同学们对这部分知识并不陌生,有了一定的积累。

  老师相信,通过本节课的学习,你一定会对体积和体积单位有进一步的认识。

  二认识体积

  1.故事导入,初感空间。

  ①你们知道《乌鸦喝水》的故事吗?谁愿意给大家讲讲?

  ②这只聪明的乌鸦是怎么喝到水的?

  为什么把石头放进瓶子里,水就会升高呢?

  2.实验演示。

  实验一:感受物体占有空间。

  ①石头真的占了水的空间了吗?我们一起来做一个实验。

  看,老师手上拿的是两个大小相同的杯子。装有一样多的水,其中一个杯子放入一块积木,会出现什么情况?

  ②水为什么会溢出来呢?

  实验二:感受物体占空间有大小

  ①这回我放这个积木块(稍大),再把水倒入这个杯子,又会有什么现象发生呢?

  ②实验演示

  ③溢出的为什么比刚才的多?

  ④ 小结:也就是说,这2个积木块不但占空间,而且占的空间有大——有小。

  ⑥那在数学中,我们把物体所占空间的大小叫做物体的体积。

  ⑦什么叫体积?(指名、齐读、领读)

  ⑧举生活中物体占空间的例子。

  三认识体积单位

  1制造矛盾冲突,引出体积单位

  ①有的物体可以通过观察就能比较出它们体积的大小,快看看哪个体积大?

  ②意见不统一了。看来光看是不能准确比较这两个盒子的体积了。

  ③怎么办?引出体积单位。

  2认识1 cm

  ①感受1立方厘米的大小:1 cm有多大呢?谁知道?

  ②课前老师让大家准备了体积是1 cm的学具,举起来我看看。

  注意听要求:请你们用格尺量一量这个正方体到每条棱到长是多少?

  ④那我们就可以说【棱长是1 cm的正方体,体积是1 cm】

  ⑤生活中哪些物体的体积是大约是1 cm?

  ⑥老师这儿有个火柴盒,你估计一下它到体积是多少cm?

  到底谁估得准呢?同桌2人用你们手中的1立方厘米的正方体摆一摆,算一算。

  ⑥汇报:

  3认识1dm

  ①刚才我们用棱长1 cm到正方体测出了火柴盒的体积,

  那下面我们还用这个1 cm到小正方体测测奶箱的体积。

  为什么?(刚才的方法不是挺好的吗?你看又是介绍方法、技巧的。)

  ②看来我们得需要一个稍大的体积单位,这个稍大的体积单位就是立方分米。

  ③ 1 dm又是怎样规定的呢?(结合课件)

  ④课前大家也准备了棱长是1 dm,也就是10㎝的正方体。

  ⑤生活中哪些物体的'体积是大约是1 dm?

  4认识1m 。

  ①刚才,我们用体积是1 cm的正方体测量了火柴盒的体积;用体积是1 dm的正方体了奶箱的体积。

  现在老师想让大家用这些体积单位测量一下教室的体积。

  ②为什么?看来我们还需要一个更大的体积单位。

  ③ 1 m有多大呢?

  ④在这个体积是1 m的正方体框架里大约能容纳多少名同学呢?

  ⑤想不想知道答案?我们来验证一下。

  ⑥演示验证。

  ⑦ 1 m的正方体大约能容纳7人,那我们教室的体积有多少m呢?

  四应用知识,解决问题。

  1在横线上填出适当的体积单位。

  课件出示:

  一块橡皮的体积约是10 _________

  VCD机的体积约是4 _________

  集装箱的体积约是40 _________

  小结:在生活中,我们要根据大小不同的物体选择合适的体积单位。

  在你的生活中,你见过体积最大的物体的是什么?体积最小的物体是什么?

  2组成下面各图的每个小正方体的体积为1 cm,把每个图形的体积填在横线上。

  延伸:你还能用4个1 cm的小正方体摆出不同的图形吗?

  小结:也就是说无论物体什么形状,含有几个体积单位,它的体积就是多少。

  3用8个1 cm的正方体,摆出体积是8 cm的正方体或长方体,你能用几种摆法?

  四、总结

  除了用数体积单位个数的方法求物体的体积,有没有更快捷、更简单的方法呢?(难道求高楼大厦的体积也用数体积单位的方法吗?

  是啊,有,一定有。

  时间的关系,谜底下节揭晓!

《体积单位》教学设计7

  教材分析:

  这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

  教学目标:

  1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

  2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

  3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

  教学准备:

  棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  教学过程:

  一、 复习导入

  1、教师提问:

  (1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

  (2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

  (3)我们认识的体积单位有哪些?

  板书:立方米 立方分米 立方厘米

  提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

  【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

  二、自主探索 验证猜测

  1、教学例11。

  (1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

  (2) 提问:这两个正方体的体积是否相等?你是怎样想的?

  (引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

  (3) 用图中给出的数据分别计算它们的体积。

  学生分别算一算,然后在班内交流:

  棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

  棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

  (4) 根据它们的体积相等,可以得出怎样的结论?

  1立方分米=1000立方厘米(板书:=)

  (5) 谁来说一说,为什么1立方分米=1000立方厘米?

  2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

  学生在小组里讨论。(板书:立方米=1000立方分米)

  班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的`?

  引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

  3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

  【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

  三、巩固深化

  1、 出示书第30页的“练一练”。

  学生先独立完成。

  交流你是怎样想的。

  小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

  【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】

  2、 出示练习七第1题。

  学生独立完成表格。

  班内交流:说说长度、面积和体积单位有什么联系?

  而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

  3、 出示练习七的第2题。

  学生先独立完成。

  交流:你是怎样想的。

  指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

  4、 出示练习七的第3题。

  学生独立完成。

  交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

  5、 出示练习七的第4题。

  学生独立完成后集体交流。

  【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计8

  教材分析:本节课是在学生已经掌握了长方体和正方体体积计算方法的基础上进行教学的,主要是让学生认识体积、容积单位的进率。教材以里放立方分米和立方厘米为例,引导学生通过实际操作,结合实际模型认识和理解立方分米和立方厘米之间的进率。通过图示引导学生通过计算正方体的体积推出1立方分米=1000立方厘米,再仿照这种方法自己推出1立方米=1000立方分米。通过教学体积单位名数的变换,和在解答实际问题的过程中的运用,发展学生的应用意识。

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、引导学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点:观察、操作中会进行体积、容积单位之间的换算。

  教学难点:体积、容积单位之间的换算

  教法和学法:教法和学法是一个统一的整体,教师的“教”应适应学生的“学”,而学生的学又离不开教师的指导。教学方法应当渗透在教学过程之中,要符合知识的科学性,还要适合学生的认识规律,才能使学生理解并掌握知识。

  本节课教学从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。使学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决问题奠定了基础

  1、要有充分的.直观操作。

  学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。

  2、启发学生独立思考。

  学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。

  3、讲练结合。

  4、充分运用知识的迁移规律,引导学生掌握新知识。教学准备:课件

  教学过程:

  一、复习导入

  师:

  1、常见的长度单位有哪些?相邻的两个长度单位间的进率是多少?

  2、常见的长度面积单位有哪些?相邻的两个面积单位间的进率是多少?

  3、我们学习的体积单位有哪些?

  提问:你能猜出相邻体积单位间的进率是多少?引出课题。

  二、自主探索验证猜测

  1、你有办法证明你的猜想或推论吗?

  (学生独立或小组讨论推导,自主探究相邻体积单位之间的进率,教师巡视,加以指导)

  2、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)

  ①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。

  ②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。

  (电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)

  ③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。

  ③口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米

  4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

  ①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。(板书:1立方米=1000立方分米)

  ②口头回答:

  2立方米=?立方分米。

  9000立方分米=?立方米

  5、补全表格,继续填写:

  单位名称

  相邻两个单位间的进率

  长度

  面积

  体积

  ①总结体积单位以及它们之间的进率

  ②说说它们分别是计量物体的什么的?

  ③怎么来记忆它们相邻单位之间的进率?

  三、巩固深化

  1、辨别

  有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米

  他换算得对吗?

  (引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)

  2、出示书第30页的“练一练”和第31页的第3题。

  学生先独立完成。交流你是怎样想的。

  小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

  3、出示练习七的第2题。

  学生先独立完成。交流:想提醒自己注意什么?

  指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

  4、出示练习七的第4题。

  学生独立完成后集体交流,进一步明确1升=立方分米,1毫升=1立方厘米

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  【板书设计】

  体积单位的换算1分米3 = 1000厘米3 1升= 1000毫升1米3 = 1000分米3 1m3 = 1000 dm3

  【教学反思】

  教学中紧扣本节课的教学内容,创设与本节的学习内容密切相关的教学情境。要把把情境的创设、旧知的复习和新知的引入有机地融合在一起,显得自然朴实,真实有效。

  掌握体积单位间的进率是本节课的重点,理解进率和建立相应的空间观念是教学的难点。教学站在新的课程标准的高度,从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。同时,把课件的演示、学具的观察与摆一摆,数一数紧密的结合,学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决奠定了基础。

  本节课注重要从学生已有的数学知识为基础,在旧知识的复习中趣味引入,在知识和情感态度两个方面,为新的认知结构的建构奠定了基础;在新知识的学习中,学生在感知中猜想,在观察与计算中验证,在独立思考和小组合作的过程中完成构建,学生学得积极、主动。同时,对课件的使用简洁明了,体现了常态下的小学数学课堂教学。

《体积单位》教学设计9

  教学目标:

  1、了解并掌握体积单位间的进率。

  2、理解并掌握体积高级单位与低级单位间的化和聚。

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

  教学重点:体积单位进率和单位之间的互化。教学难点:复名数和单名数之间的转化。教学过程:

  一、复习准备

  1、教师提问

  (1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

  (2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

  2、口答填空,并说明算法和算理。

  (1)4米=()分米=()厘米

  (2)500厘米=()分米=()米

  3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。

  二、学习新课

  (一)认识体积单位间的进率

  1、认识立方分米和立方厘米的关系

  (1)指导学生自学,出示自学提纲

  A、棱长是l分米的正方体的体积是多少?

  B、棱长是l0厘米的正方体的体积是多少?

  C、1立方分米与1000立方厘米哪个大?为什么?

  (2)学生分组汇报.教师演示动画“体积单位间的进率l”

  2、推导立方米与立方分米的关系.

  (1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?

  (2)棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。板书:l立方米=1000立方分米

  (3)思考:1立方米等于多少立方厘米呢?

  3、小结:相邻的两个体积单位间的进率是l000

  4、完成书上想一想,填一填。

  三、巩固反馈.

  1、口答填空,说出计算过程

  0.9立方米=()立方分米

  540立方厘米=()立方分米

  38立方分米=()立方米

  4立方分米50立方厘米=()立方分米10.35立方米=()立方米()立方分米

  2、判断正误,并说明理由.0.5立方米=500立方厘米()

  2.6立方分米=2立方米60立方厘米()

  四、课堂总结.

  今天我们学习了什么内容?你还有什么不懂的'地方吗?

  设计意图:体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:1.重视学生的自主猜测、主动探究。在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。 2.重视转化、推算等方法。为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。

  五、板书设计

  体积单位的换算1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升

《体积单位》教学设计10

  教学目标:

  1、了解并掌握体积单位间的进率.

  2、理解并掌握体积高级单位与低级单位间相互转化.

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间转化进行计算.

  教学重点:体积单位进率和单位之间的互化.

  教学难点:理解并掌握体积高级单位与低级单位间的转化方法。教学过程:

  一、复习旧知.

  1、教师提问:

  (1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

  板书:长度单位1米=10分米

  1分米=10厘米

  厘米

  (2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

  板书:面积单位

  1平方米=100平方分米

  1平方分米=100平方厘米

  平方厘米

  2、口答填空,并说明算法和算理.

  (1)4米=()分米=()厘米

  算法:进率×高级单位的数

  (2)500厘米=()分米=()米算法:低级单位的数÷进率

  3、引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化.(板书课题:体积单位间的进率)

  二、学习新课

  (一)认识体积单位间的进率

  1、认识立方分米和立方厘米的关系.

  (1)推导立方厘米与立方分米的关系.

  A、棱长是1分米的正方体的体积是多少?

  B、棱长是10厘米的正方体的体积是多少?

  C、1立方分米与1000立方厘米哪个大?为什么?(2)学生汇报.

  因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体.

  1分米×1分米×1分米=1(立方分米)

  10厘米×10厘米×10厘米=1000(立方厘米)

  (3)板书:1立方分米=1000立方厘米

  2、推导立方米与立方分米的关系.

  (1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?

  用什么方法可以验证你的想法是否正确呢?(学生讨论,汇报)

  (2)“体积单位间的进率2”

  棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体.

  板书:1立方米=1000立方分米

  (3)思考:1立方米等于多少立方厘米呢?

  3、小结:相邻的两个体积单位间的进率是1000.

  4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?

  (名称、进率两方面.)

  (二)体积单位的互化

  1、例3:8立方米、0.54立方米各是多少立方分米?

  8立方米=()立方分米

  0.54立方米=()立方分米

  教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?

  想:因为1立方米=1000立方分米,8立方米有8个1000立方分米

  列式:1000×8=8000,填8000

  (第2题同上理)1000×0.54=540,填540

  2、例4:3400立方厘米、96立方厘米各是多少立方分米?

  3400立方厘米=()立方分米

  96立方厘米=()立方分米

  教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理.

  想:因为1000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:3400÷1000=3.4,填3.4

  (第2题同上理)96÷1000=0.096填0.096

  3、教师:请对比例3,例4,说一说这两道题有什么不同?

  板书:

  (例3下面)高级单位→低级单位,用进率×高级单位的数.

  (例4下面)低级单位→高级单位,用低级单位的'数÷进率.

  4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同.)

  (三)练习解决实际问题.

  出示例5:一块长方体钢板长2.2米,宽1.5米,厚0.01米.它的体积是多少立方分米?

  方法一:2.2×1.5×0.01=0.033(立方米)

  0.033立方米=33立方分米

  方法二:2.2米=22分米1.5米=15分米0.01米=0.1分米

  22×15×0.1=33(立方分米)

  答:这块钢板的体积是33立方分米.

  三、巩固反馈.

  1、口答填空,说出计算过程.

  0.9立方米=()立方分米

  540立方厘米=()立方分米

  38立方分米=()立方米

  4立方分米50立方厘米=()立方分米

  10.35立方米=()立方米()立方分米

  2、判断正误,并说明理由.

  0.5立方米=500立方厘米()

  2.6立方分米=2立方米60立方厘米()

  四、课堂总结.

  1、体积单位的进率.

  2、体积单位的转化方法.

  五、课堂练习.口算51页第一题

  六、板书设计

  单位相邻的两个单位间的进率

  长度

  米

  分米

  厘米10面积

  平方米

  平方分米

  平方厘米100体积

  立方米

  立方分米

  立方厘米1000 ×进率

  高级单位低级单位

  ÷进率

《体积单位》教学设计11

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。

  教学准备:

  体积是1立方厘米的小正方体,容积是1立方分米的小正方体,多媒体课件前置预习:

  1、棱长为1分米的正方体容器里可以放()个体积为1立方厘米的小正方。

  2、1m3=()dm3 1L=()立方分米,1ml=()立方厘米1L=()ml教学过程:

  一、复习回顾,导入新课

  师:我们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。师:首先,我们一起复习一些学习过的.知识。(幻灯片出示说一说)

  师:(读题提问)常用的体积单位有哪些?(生齐答)

  师:(继续提问)容器内的液体量一般使用哪些单位?师:(读题,举例说明1m,1dm,1cm分别有多大)

  生:举例说明,(每个举例两、三个)

  师:那它们间的进率是多少呢,猜一猜,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。

  二、自主探究,获取新知

  师:小组合作,一起观察、分析课前准备的正方体,棱长为1分米的正方体盒子中,可以放多少个体积为1立方厘米的小正方体?想一想,说一说,填一填

  生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,大的正方体一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,刚好能装1000个,所以棱长为1分米的正方体盒子中,可以放1000个体积为1立方厘米的小正方体,所以1立方分米=1000立方厘米。

  生:体积为1立方分米的正方体,棱长为1分米,也可以看成是棱长为10厘米的正方体,体积是10×10×10=1000立方厘米。所以1立方分米=1000立方厘米,它们只是单位不同,但是表示的正方体的大小是相同的。师:演示订正师:同学通过探索知道了立方分米和立方厘米的关系1立方分米=1000立方厘米,老师有一个问题,在前面的学习中我们学习了升和毫升,现在你知道升和毫升的关系吗?请大家说说1L=()立方分米,1ml=()立方厘米,1L=()ml?生:棱长为1分米的容器的容积为1升,这个容器所能容纳物体的体积就是1立方分米,所以1升=1立方分米。

  生:棱长为1厘米的容器的容积为1毫升,这个容器所能容纳物体的体积就是1立方厘米,所以1毫升=1立方厘米。

  生:因为1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升

  师:你的逻辑推理能力真厉害,大家同意吗?

  师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000,还有哪一个体积单位我们还没有研究呢?1立方米等于多少立方分米?你是怎样想的,生独立尝试方法同上

  师:同学真棒,我们得出了1立方米=1000立方分米,请大家观察这个些体积单位,相邻的体积单位之间的进率是?、容积单位呢?师:请大家完成书本第44页的表格生汇报订正

  师:同学都理解了吗?请大家思考一下1立方米=()立方厘米。与组员说说你的想法。生:因为1立方米=1000立方分米,1立方分米=1000立方厘米,所以1立方米=1000立方分米=(1000000)立方厘米

  师:通过学习,我们知道了相邻的体积单位,容积单位之间的进率是1000,你们能用学习的知识完成下面的练习吗?

  三、巩固练习,应用新知

  书本第45页练一练第1、2、3、4、5题

  四、全课总结

  五、板书设计

  体积单位的换算

  1m3=1000dm3 1dm3=1000cm3

  1m3=1000dm3=1000000cm3 1L=1dm3 1mL=1cm3

  1L=1000mL

《体积单位》教学设计12

  教学目标:

  1 .使学生理解体积的概念,了解常用的体积单位,形成表象。

  2 .培养学生比较、观察的能力。

  3 .发展学生的空间观念。

  重点难点:

  使学生感知物体的体积,初步建立1 立方米、1 立方分米、1 立方厘米的大小。

  教学过程:

  一、认识体积(激趣导入)。

  1、“同学们,你们听过乌鸦喝水的故事吗?”(学生作答)老师播放“乌鸦喝水”的课件,提问:乌鸦是怎么喝到水的?(乌鸦把石头一粒一粒地衔到瓶子里,石头占了水的空间,所以把水挤出来了。)

  2、“石头真的占了水的空间吗?”(实验验证)

  拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生观察,发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。

  二、揭示体积

  出示下面的图,问:你们知道这些物体哪个占的空间大吗?

  手机 影碟机 电视

  学生回答后,说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书体积概念)

  三、列出体积单位。

  1、出示两个形状不同,体积相近的长方体。(单凭观察,难以比较)

  2、用多媒体将它们分成大小相同的小长方体后,学生很快就确切的说出:左边的长方体体积大于右边的长方体体积。(因为左边长方体有16 个小长方体,而右边的只有15 个)

  说明:所以要比较物体的体积大小,需要有一个统一的体积单位。我们知道长度单位是用线段表示的,面积单位是用正方形来表示的,那么体积单位应该用什么来表示呢?(用正方体来表示)。常用的.体积单位有立方厘米、立方分米、立方米。(板书)

  四、认识体积单位。

  1、“请你猜一猜1cm3、ldm3 、1m3,是多大的正方体?”

  讨论后让生看着实物共同小结:

  棱长是Icm 的正方体,体积是1cm3 (手指尖);

  棱长是ldm 的正方体,体积是ldm3(粉笔盒);

  棱长是l m 的正方体,体积是1 m3(一台洗衣机)。

  2、“要计算一个物体的体积,就要看这个物体中含有多少个体积单位。”请同学们用4 个1cm3 的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?( 4cm3 )为什么?(因为它是由4 个体积是1Cm3 的小正方体摆成的)

  五、课题练习:(略)

  教学反思:

  本节课,我从《乌鸦喝水》这个故事自然引入新课。借助1立方厘米、1立方分米、1立方米的直观教具,让生通过摸一摸、量一量、比一比,说一说等实践活动,亲身经历和体验体积单位。教学中,我注意把教材内容与生活实践相结合、动手操作与实验观察相结合,努力培养学生用数学的意识解决实际问题的能力和创新精神。

《体积单位》教学设计13

  教学目标:

  使学生通过对具体事物的观察,了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。

  教学重点:

  了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。

  教学难点:

  感受1立方米、1立方分米、1立方厘米有多大。

  教学方法:

  一、教学体积。

  1、师生互动。

  感受教师占的空间大,学生占的空间小。

  2、小实验。

  感受大石头占的空间大,小石头占的空间小。

  3、观察比较。

  鞋盒占的空间大,火柴盒占的空间小。

  4、举例生活中物体所占空间的大小。

  5、总结体积的意义。

  二、教学体积单位。

  通过教师描绘两个物体组合的样子,猜一猜它们体积的大小,从而引出计量体积的大小要有一个统一的标准(体积单位)。

  课件展示三种体积单位的规定方法:

  棱长是1厘米的正方体的体积是1立方厘米。

  棱长是1分米的正方体的体积是1立方分米。

  棱长是1米的正方体的体积是1立方米。

  通过观察学具、举例子、测量实物创造以一体积单位为单位的组合体。

  分别教学1立方米、1立方分米、1立方厘米。

  让学生感知1立方米、1立方分米、1立方厘米的大小。

  教学过程

  导入:同学们,点、线、面、体构成了我们千变万化的数学图形,我们知道线有长短、面有大小,线的长短叫长度,面的大小叫面积,那体有大小吗?体的大小叫什么?带着这个问题,让我们一起走进今天的课堂。

  首先老师要和大家分享两个生活现象,考考你的眼力,同学们,有没有信心?

  (1)师:请一位同学和老师配合来一个换座游戏,用数学眼光从我们身上你能发现什么数学信息?

  师:老师坐在同学的座位上,你有什么感觉呢?

  生:地方小、挤

  师:为什么感觉挤呢?

  生:老师占的空间大,同学占的空间小(板书空间)

  (2)师:这是什么

  生:石头

  师:一大一小两块石头和液面相等大小一样的两个水杯,现在老师要把石头分别放入水杯中,猜想液面会怎样?注意观察。

  师:怎样

  生:液面都上升了

  师:为什么会上升

  生:因为石头都占有一定的空间

  师:上升的高度一样吗

  生:大石头占得空间大,液面上升的高度就大,小石头占得空间小,液面上升的高度就小

  (3)师:认真观察比较火柴盒、文具盒、鞋盒哪个占得空间大

  生:鞋盒

  师:在我们身边,还有比鞋盒所占空间更大的物体吗?

  生:书包、音响、凳子、课桌、讲台桌、教室、一排教室、教学楼、地球、宇宙…….

  (4)通过比较,我们发现物体不仅占有一定的空间,而且它们所占的空间有大小之分,我们就把物体所占空间的大小叫做物体的体积。(板书)

  师:物体所占的空间大,那它的体积就大,物体所占的空间小,那它的体积就小。

  师:选择一个你喜欢的物体,用上“体积”这个词描述一下它的大小。(同桌pk)

  生:鞋盒的体积大,文具盒的体积小

  讲台桌的体积大,课桌的体积小

  教学楼的体积大,教室的体积小

  师:说的真好

  老师这也有两个物体组合,想让你们比比它们的体积大小,请同学闭上眼睛听老师描述两个物体的样子,听完后迅速作出判断。

  师:第一个物体是由4个小正方体搭成的,第二个物体是由6个小正方体搭成的

  生1:6个的大,因为用的个数多

  生2:不确定,因为它们所用的小正方体的大小不确定。

  师:到底哪个大呢?看大屏幕(课件展示)

  师:6个的一定大吗?为什么用的个数多,体积却不大呢?

  生1:因为它用的小正方体小,而它用的小正方体大

  生2:因为它们所用的小正方体不一样大

  师:如果用数个数的方法比较它们的体积,需要有什么前提条件?

  生1:所用每个小正方体的体积一样大

  生2:选同样大小的小正方体去搭

  师:每个小正方体的体积一样大,也就是要建立一个统一的标准

  计量长度的标准是长度单位

  计量面积的标准是面积单位

  计量体积的标准就是体积单位

  看课件演示,像这样选同样大小的小正方体作为统一的体积单位,就可以更准确的计量出物体体积的大小

  师:常见的体积单位有立方厘米、立方分米、立方米(板书)

  每种体积单位是怎样规定的?我们先一起回顾面积单位的由来。

  课件演示

  师:面积单位是用什么图形来表示的?(正方形),体积单位会用什么来得到呢?(正方体)

  一、师:拿出最小的那个小正方体,量一量它的棱长(1厘米)

  A、我们规定,棱长是1厘米的小正方体的体积是1立方厘米(课件)

  B、用手捏一捏,感觉它的大小,生活中见过这么小的物体吗?哪些物体的体积接近1立方厘米?

  生:骰子、电视按钮、电脑键盘、花生米、一节小手指……

  C、师:橡皮的体积大约是几立方厘米?估计一下,你是怎么估计的(找一学生到前面展示方法)

  师:生活中还有哪些物体的`体积可以用1立方厘米的小正方体去测量

  生:粉笔、钢笔、火柴盒、文具盒……

  D、用你手中的教具创作一个以立方厘米作单位的物体组合,并说出它的体积,小组内互相比一比,看谁的体积大

  E、请同学用12个小正方体任摆一个物体,你知道它的体积是多大呢?(举起来)

  师:为什么同学拼的形状不同,体积却一样大呢?

  生:因为它们都用了体积是1立方厘米的小正方体12个

  二、现在老师想用这个1立方厘米的小正方体测量鞋盒的体积,合适吗?

  生:不合适,太小了

  师:拿出那个较大的正方体,量一量它的棱长

  A、我们规定棱长是1分米的正方体体积是1立方分米(课件)

  B、用手捧住它,感受它的大小生活中哪些物体的体积大约是1立方分米

  生:粉笔盒、小音箱、茶叶筒、双拳握在一起……

  C、鞋盒的体积大约有几立方分米?

  师:你是怎么测量的?生活中还有哪些物体的体积可以用立方分米作单位来测量?

  生:电视机、微波炉、投影仪、电闸盒、我家的整理箱

  D:小组合作,创作一个以立方分米作单位的物体组合

  生:我用了几个小正方体,体积是多少

  D、师:我想摆一个大正方体,至少用几个这样的小正方体,体积是多少?试试看

  三、用刚才认识的两个体积单位去测量教室的体积,行吗?

  师:比立方分米更大的体积单位是立方米,谁能仿照前面的规定说出1立方米有多大

  生:棱长是1米的正方体的体积是1立方分米(课件)

  师:双臂微微打开长约1米

  A、4人合作,围一围,创作一个1立方米的空间

  B、好,刚才同学们亲身体验了1立方米

  师:老师这还有3根一米长的木条,在墙角搭一个1立方米的空间,看看1立方米的空间可以容纳多少人,谁想来试试

  师:1立方米的空间可以容纳9个人

  C、1立方米的空间可真大,生活中见过这么大体积的物体吗?教室中有没有?除了讲台桌,还有哪些物体的体积约是1立方米(生答完展示课件)

  D、不要小看这1立方米

  1立方米的水可以倒满500个暖水瓶

  1立方米的木材可以做50张课桌的桌面或300个桌腿

  师:生活中哪些物体的体积可以用立方米作单位来测量

  总结:同学们,刚才我们认识了3种体积单位,为了方便,每种体积单位可以用字母这样表示(板书)

  谁能用一句话概括对每种体积单位的理解呢?

  生:边演示边叙述,立方厘米很小(只能用手指捏住)、立方分米较大(要用手捧住捧)、立方米最大(要用手臂抱住)

  师:同学们,学到这,你能告诉老师对体的大小你是怎么认识的

  生:体的大小就是物体所占空间的大小,也就是物体的体积

  师:而且计量体积的大小要有统一的标准,即体积单位,这就是我们今天所学的课题(板书:体积和体积单位)

  师:以后再去计量一个物体的体积时,首先根据这个物体所占空间的大小选择合适的体积单位,再看这个物体包含有多少个这样的体积单位,从而得到它体积的大小。

《体积单位》教学设计14

  教学目标:

  知识目标:

  结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  能力目标:在观察、操作中,发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。

  教学策略:教师引导学生进行自主探究。

  教学准备:图表课件

  教学过程:

  一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。

  二、教学新知:

  1、让学生利用手中的教具摆出正方体。

  1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。

  2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。

  3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。

  单位

  相邻两个单位之间的'进率

  长度

  米、()、厘米

  10

  面积

  米2、()、厘米2

  体积

  米3、()厘米3

  4、课堂练习

  (1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。

  (2)可以让学生通过计算来分析、比较从而解决问题。

  通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。

  (3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)

  (4)先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)

  四、课堂小结:

  学习了这节课,同学们有什么感受和体会?

  板书设计:

  1分米3 = 1000厘米3

  1升 = 1000毫升

  1米3 = 1000 分米3

  1m3 = 1000 dm3

《体积单位》教学设计15

  教学内容:北师大版课程实验教材《数学》五年级(下册)43-45页练习1

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米。

  2、了解立方厘米、立方分米、立方米之间的进率。

  3、掌握体积单位之间的换算方法。

  重难点:体积单位之间的换算。教学过程:

  一、引入:

  1、同学们,上节课我们学习了几个体积单位,谁知道是那几个吗?

  2、很好,那我们以前还学过关于长度和面积的单位,谁来说下常用的长度单位有那些?常用的面积单位有那些?

  3、那么长度单位、面积单位它们之间的进率是多少?

  4、你们想不想知道体积单位他们之间的进率呢?

  二、研究探讨

  1、刚才我们知道了相邻两个长度单位之间的进率是10,也就是说1米=10分米,1分米=10厘米,而且我们知道1米=100厘米。那么谁来说下我们是怎么知道相邻两个面积单位之间的进率的呢?或者他们的推导方法是什么呢?

  2、对我们可以根据长度单位之间的进率来推导1平方米=1米×1米=10分米×10分米=100平方分米用同样的方法可以推导出1平方分米=1分米×1分米=10厘米×10厘米=100平方厘米

  3、我们知道1立方米=1米×1米×1米,那么大家想一想,用刚才的推导关系怎样得出平方米和平方分米的关系或者进率?

  4、好,大家想了一会了,谁来上黑板把你自己的想法用算式书写出来。

  5、表扬学生,并且书写正确的'推导算式:1平方米=1米×1米×1米=10分米×10分米×10分米=1000立方分米。现在请同学们根据我书写的关系式推导出立方分米和立方厘米的关系。得出1立方分米=1000立方厘米。

  6、练习

  20立方米=

  立方分米

  1.2立方米=

  立方分米

  200立方分米=

  立方米

  30000立方厘米=

  立方分米

  7、我们刚才知道了相邻的2个体积单位之间的进率,那么不相邻的立方米和立方厘米他们之间是什么关系呢?我们先想下1平方米等于多少平方厘米呢?对,等于10000平方厘米,同样用推导关系可以推导出来。那么现在大家自己动手推导出立方米和立方厘米之间的进率。(巡视,对有困难的学生进行帮助指导)

  8、集体反馈结果。得到1立方米=1000000立方厘米。

  9、练习

  0.2立方米=

  立方厘米

  20000000立方厘米=

  立方米

  三、巩固练习

  1、完成课后练习2、3题。

  2、我们还学习了容积单位,下去同学们把他们之间的关系做出来,再根据体积和容积之间的关系,求出他们之间的进率。

  四、总结

  1、这节课我们学到了什么?

  2、单位换算的时候要注意什么?

【《体积单位》教学设计】相关文章:

《体积和体积单位》教学设计03-09

体积和体积单位教学设计11-30

《体积和体积单位》教学设计06-09

《体积和体积单位》教学设计06-09

《体积和体积单位》教学设计与反思06-25

(精)体积和体积单位教学设计04-13

《体积和体积单位》教学设计(精选5篇)06-27

关于《体积和体积单位》的教学设计(通用6篇)08-25

体积单位间的进率教学设计04-14