八年级数学教学设计
作为一位兢兢业业的人民教师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?下面是小编精心整理的八年级数学教学设计,欢迎阅读与收藏。
八年级数学教学设计1
本课时学习目标:
1.通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2. 能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3. 进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
本课时重点难点:平均数的意义及求平均数的方法。
学习过程
自学准备与知识导学:
1、预习课本92-93页的内容,不明白的地方标出来。
2、通过预习,我认为男生与女生相比, 套得准,因为小组内交流预习情况
学习交流与问题研讨:
1、要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?
2、出示学习菜单:
(1)书中有几种方法求男生平均成绩的?谁能给大家介绍介绍?
(2)仔细看统计图的变化过程,思考是如何分的?
(3)怎样列算式计算?
归纳总结:要求平均数,可以先求出( )数,再()。
3、研究平均数的意义。
(1)这个7分就是男生每人实际得分吗?你是怎么理解的?
(2)请你仔细观察平均数与原来的这一组数,你发现了什么?
4、算女生平均分。
(1)先估计女生平均每人套中多少个?你是怎么想的?
(2)大家估计得准不准呢?用什么方法验证一下?
(3)说说你的验证方法。
(4)为什么要除以5?
小组讨论菜单中的问题
点拨:这种方法叫:“移多补少”
点拨:这种方法叫:“求和均分”
小组交流,教师巡视,给予指导。
练习检测与问题延伸:
1、出示“想想做做”第一题
(1)怎样移动笔筒里的铅笔?
(2)你还有其他的方法吗?
(3)如果从第一个笔筒里拿出3枝放入第二个笔筒,再从第二个笔筒里拿出5枝放入第三个笔筒,平均每个笔筒里有多少枝?
(4)如果从第三个笔筒里拿出3枝放入第二个笔筒,再从第一个笔筒里拿出3枝放入第二个笔筒,平均每个笔筒里有多少枝?
(5)关于笔筒的三个平均数,有变化吗?为什么?
2、“想想做做”第二题
说说你是怎样做的?
3、小林参加了三场套圈比赛,下面是小林套中个数的统计:
第一次
第二次
第三次
平均成绩
小 林
12
11
10
小林第三次套中的个数是多少呢?
4、教材第97页的“你知道吗?”
5、检测:想想做做第3、4题
小组交流、汇报
根据学生解决实际问题中出现的问题,进行进一步的明确指导。
学生独立完成检测,教师巡视,给予差生适当的帮助。
课后反思或经验总结:
平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中结合实际问题(男女生套圈比赛)哪个队会获胜?要判断男生套的准还是女生套的准,为什么要分别求出男、女生平均每人套中的个数?引导学生展开交流、思考。在学生的活动讨论中,认识到平均数能代表他们的整体情况,因此产生了“平均数”,感受平均数是实际生活的需要,也产生了学习“平均数”的需求。教学只有组织了这个过程,学生对平均数的统计意义以及作用才有比较深刻的理解,也才能在面临相类似问题时,能自主地想到用平均数作为一组数据的代表,去进行比较和分析。
另外, 我采用了小组合作,自主探究的方式让学生自己探索出求平均数的方法。一种是移多补少,一种是求和均分。然后引导学生感受到这两种方法的本质都是让原来不相同的数变的相同,从而引出平均数的概念。并在讲解方法的同时,不失时机地渗透:平均数处于一组数据的最大值和最小值之间,能反映整体水平,但不能代表每个个体的情况。这样一来,学生对平均数这一概念的认识显得更为深刻和全面。
八年级数学教学设计2
一、教材简析:
“用数学”综合练习的编排,一般都引导学生结合情境图理解题意,进行计算,或结合情境图提出问题,再进行计算。
二、教学目标:
1、使学生进一步掌握应用题的基本结构,学会解决简单的减法应用题。
2、初步经历在具体情境中提出问题和解决问题的过程,培养学生解决简单实际问题的意识和能力。
3、在解决减法的具体情境中,培养学生学习和应用数学的兴趣。
三、教学重点:
使学生进一步掌握应用题的基本结构,学会解决简单的减法应用题。
教学难点:培养学生收集信息和提数学问题的能力。
四、教具准备:
课件
五、教学方法:
问题探究、启发引导、合作交流
六、教学过程:
(一)谈话导入
师:同学们,今天我们继续来学习简单的应用题。谁愿意来说说解答应用题时要注意什么?
学生说。
(设计意图:复习旧知,引导学生了解应用题的基本结构)
(二)巩固练习
1、课本21页第1题。
师:你在图中找到了哪些数学信息?
师:你能把图中的兔子分一分吗?你打算从哪个方面来分?
(设计意图:引导学生从左右和颜色这两个不同的角度来观察)
师:要求右边有几只兔子,要用到哪些数学信息?怎样列式?
师:要求白兔有几只,要用到哪些数学信息?怎样列式?
(设计意图:引导学生收集对解决问题有用的数学信息,以此来解决问题。)
生独立完成。
2、课本21页第2题。
师:观察图片,你能自己编出一道应用题吗?试一试?
同桌互说。
(设计意图:引导学生根据情境编题,增强学生收集数学信息和提问题的能力。)
指出:左边的女孩要写15个大字,还要写6个,已经写了几个?
右边的女孩要写15个大字,已经写了7个,还要写几个?
师:怎样列式?
请生独立完成。
3、课本第22页第4题。
师请全班读题,寻找数学信息和问题。
请生独立完成。
(设计意图:通过前面两题的练习,学生已经对应用题的基本结构有了进一步的认识,这时让学生来解决这题,给学生思考的空间,增强运用数学的能力。)
4、课本第22页第7题。
师:从图中你看到了什么?你能根据图片编一道应用题并解决吗?四人小组讨论一下
(设计意图:这题是一道开放性的练习,培养学生独立发现问题、提出问题、解决问题的能力。)
生完成此题。
(三)全课小结
师:通过今天的学习,相信大家对解决问题应该更有信心了,你在这节课中学到了什么?你觉得解决问题有什么需要注意的地方吗?
生说。
(设计意图:通过全课小结,让学生有反思的意思,对自己这节课的收获和不足做到心中有数。)
七、板书设计:
用 数 学 练 习
条 件
问 题
算 式
八年级数学教学设计3
教学目标
1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。
2、通过分数的学 教学重点:理解分数的意义
教学难点:认识单位“1”和概括分数的意义
教学工具
ppt
教学过程
一、温故知新:
师:三年级上学期我们已初步学 生:
师:谁能说出分数各部分的名称:生说师板书。
师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。
二、探究新知
(一)分数的产生
1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)
师:(出示情景图)其实古人也发现类似的情况:他们用打了结的绳子来测量石头的长度,每两个结之间表示一个单位长度。发现这块石头长3段多一点。这时旁边记录人提出疑问:剩下的不足一段怎么记哪?
2、(出示一个西红柿图:)同学们,把1个西红柿平均分给2个同学,每人能分得一个完整的西红柿吗?
3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)
T:小结:我们通过把一个物体、一个计量单位、或是一些物体等都可以平均分成4份,取其中一份得
3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。
板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)
谁能说说自然数1与单位“1”有什么不同吗?生:………
我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:
把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍
(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)
四、巩固训练大闯关(看谁反应快、回答得对):
(出示练 五、总结:通过学 通过这节课的学 掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。
教学重难点
学 学 一、复 教师根据学生的分类,把假分数取出来,让学生观察。
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。
3.揭示课题:这节课我们来一起学 二、探究新知。15分钟)
教学例3。
1.把3/3 8/4化成整数。
(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?
(2)讨论:如何把3/3、8/4化成整数?
2.把7/3 、6/5化成带分数。
(1)提问:7/3 、6/5的分子不是分母的倍数,这种情况怎样转化?
(2)交流讨论方法。
(3)学生在练小结:把假分数化成整数或带分数的方法。
学案
1.根据真分数和假分数的意义进行分类,汇报交流。
2.交流假分数的分类情况。
3.明确本节课的学小结。
三、巩固练 四、课堂总结。(5分钟)
1.通过本节课的学 课后小结
本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。
课后 八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
1.读出下面的带分数。
3 1/8读作:_____________
70 3/57读作:_____________
2 4/79读作:_____________
2.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
答案:8 15 23
3.填一填。
(1)23÷9= ( )/( )
(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )
(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。
4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)
答:张师傅做得快。
板书
假分数化成整数或带分数的方法:
用分子除以分母,当分子是分母的倍数时,能化成整数,商就是这个整数;
当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
八年级数学教学设计4
目的:巩固平方根的概念。其中在处理第5小题时,应先把带分数化为假分数。
不足:可以让学生求小数的平方根,如:求0.0004的平方根,可能学生会出现两种不同的方法:其一,直接求;其二,化为分数求,不管怎样都要引导学生去发现,最终归纳问题的症结在于当被开方数是小数时,其平方根小数点的位数应如何确定。于是再次引导学生通过观察得到结论:被开方数与其平方根小数点位数是2:1的关系。这样就能更深层次地提升学生的分析能力,教师在教学时有必要这样做。
练习2、求下列各数的平方根:(抢答)
64,0.01,121,0.09,0,,,-0.36
目的:熟练求平方根的方法并能提高解题的速度,从而活跃课堂气氛。把整节课的教学推向了高潮,也是本节课的亮点。
4、注意课堂教学的完整性。
在完成课堂小结和布置作业后,解决课堂上一开始提出的问题:面积为2的正方形的边长是多少?
目的:通过本节课的学习,使学生掌握平方根的概念,一方面使新授知识得到充分的应用,另一方面起到前呼后应的教学效果。
不足:由于时间较紧,所以讲解速度较快,可能使部分同学未能真正理解。
总之,对于这样一节概念课,如果学生对概念的理解只停留在死记硬背,机械模仿的阶段,那绝对不是数学概念课所要提倡的教学方法。学生对数学概念的掌握,是逐步地深入和发展起来的。对一些具体的对象,进行分析、综合、归纳、抽象、类比等,概括出它们的一般的与本质的特征。因此,为了使学生正确地掌握数学的基础知识,并在实际中应用这些知识,就必须要使学生形成正确的数学概念。这就要求我们教师在教学过程中能充分利用课堂资源,选择合理教学方法和手段,来刺激学生的大脑,激发学生的求知欲望,培养学生的分析能力,最终使课堂教学落到实处
八年级数学教学设计5
教材分析
1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;
2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。所以本节内容在初中数学知识体系中起到承上启下的作用。
学情分析
1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。
2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的
性质定理的证明和运用性质定理证明线段相等。
3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等
教学目标
1、知识与技能:角平分线定理及定理的证明及应用。
2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。
3、情感、态度与价值观:通过自主学习的发展体验获取数学知识的感受。
教学重点和难点
教学重点:角平分线的性质定理的探究、证明、运用。
教学难点:角平分线的作图方法、角平分线的性质的运用。
八年级数学教学设计6
学习目标:
1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;
2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.
重点:建立函数模型
难点:灵活运用数学模型解决实际问题
教学过程
一、导入
做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.同学们通过讨论下面的问题,可以体会如何运用一次函数选择最佳方案.解决这些问题后,可以进行后面的实践活动.
二、自学安排
先阅读课本131页问题1然后阅读133页问题3的内容,并回答问题。
疑问题1:一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元.一种白炽灯的功率是60瓦(即0.06千瓦),售价为3元.两种灯的照明效果一样,使用寿命也相同(3000小时以上),如果电费价格为0.5元/(千瓦时)。消费者选用哪种灯可以节省费用?
“问题1”中,节省费用的含义是什么?灯的总费用由哪几部分组成?如何计算两种灯的总费用?
预习提示:(多媒体展示)
(1)1千瓦= 瓦 1瓦= 千瓦 1度电= 千瓦·时。
(2) 耗电量(度)=功率(千瓦)×用电时间(小时)
电费=单价×耗电量
总费用=电费+灯的售价
(3) 白炽灯60瓦,售价3元,电费0.5 元/ (千瓦时),使用1000小时费用是多少元?
(4) 节能灯10瓦售价60元, 电费0.5 元/(千瓦时),使用1000小时费用是多少元?
电费=0.5× × ;总费用= +
分析:要考虑如何节省费用必须考虑灯的售价和电费,不同的灯售价分别是不同的常数,而电费与照明时间成正比例。因此总费用与灯的售价、功率和照明时间有关,写出函数解析式是分析问题的基础。
(多媒体展示)由浅入深引入问题A:一种节能灯10瓦60元,白炽灯60瓦3元,两种灯照明效果一样,使用寿命也相同(3000小时以上)。如果电费是0.5元/ (千瓦·时),当照明时间为多少小时时,两种灯费用相同?
(让学生解决,然后然后教师给出书写步骤,接着解决节省费用的问题。第一种方法用数的形式解决,第二种用形的方法解决。)
先让学生完成然后多媒体展示解题过程
解:略。
问题B
一种节能灯10瓦60元,白炽灯60瓦3元,两种灯照明效果一样,使用寿命也相同(3000小时以上). 如果电费是0.5元/ (千瓦·时), 选哪种灯可以节省费用?
(先让学生完成然后多媒体展示解题过程)
解:略。
你会利用函数图象解决这个问题吗?(在教师的引导下,让学生用一次函数图像解决)
解:略。
巩固练习
如图1,l1、l2分别表示一种白炽灯和一种节能灯的费用(费用=灯的售价+电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是20xx小时,照明效果一样.
(1)当照明时间为多少小时,两种灯的费用相等?
(2)当照明时间为多少小时,选择白炽灯节省费用?
(3)当照明时间为多少小时,选择节能灯节省费用?
(4)小亮房间计划照明2500小时,他买了一个白炽灯
和一个节能灯,请你帮他设计最省钱的用灯方法.
(直接给出答案,不必写解答过程)
问题3:从A,B两水库向甲乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A,B两水库各可调水14万吨,从A地到甲地50千米,到乙地30千米,从B地到甲地60千米,到乙地45千米。设计一个调运方案,使得水的调运量(单位:万吨×千米)最小。
“问题3”中,什么是调运量?调运量更什么有关系?影响费用的变量是什么,它与费用之间有什么关系?
分析:(结合多媒体进行分析,完成下面的空格)
(1)首先考虑到影响水的调运量的因素有两个,即 和 ,水的调水量是两者的 ,乘积越大,则调运量越 (填“大”或“小”)
(2)其次应该考虑到由A、B水库运往甲、乙两地的水量共 个量。分别为:①由A向 ②由A向 ③由B向 ④由B向 ,它们互相联系。
(3)设从A水库调往甲地的水量为x吨,而A、B两水库各可调水 万吨,则
①从A水库调往乙地的水量为 万吨。
②甲地共需水 万吨,从A水库已调入 万吨,还需要从B水库调入 万吨。
③乙地共需水 万吨,此时从A水库已调入 万吨,还需要从B水库调入 万吨。
甲乙总计AxB总计
(4)填表:
(5)水的调运量为 和 的乘积:
①从A水库到甲地 千米,调水 万吨,调水量为 。
②从A水库到乙地 千米,调水 万吨,调水量为 。
③从B水库到甲地 千米,调水 万吨,调水量为 。
④从B水库到乙地 千米,调水 万吨,调水量为 。
(6)设这次调水总的调运量为万吨千米,则有= 化简这个函数= 。
【讨论展示】①在上面(4)的表中,调入水量的代数式都应该是正数或0,所以≥0
14-x≥0
15-x≥0 解这个不等式得
x-1≥0
②画出这个函数的图象。
③看化简后的函数解析式,要想使调运量最小,则自变量x的取值应最 (填大或小),结合函数图象可知水的最小调运量为:= 。
【变式训练】设从B水库调往乙地的水量为x万吨,能得到同样的最佳方案吗?(先让学生去完成,接着教师用多媒体展示正确的过程)
(1)填表:
(2)设水的调运量为万吨·千米,则有= ,化简得= 。
(3)自变量x的取值范围为
(4)最小的调运量为=
巩固练习:(多媒体展示1和2)
三、课堂小结:
1.本节课的收获:先由学生总结,老师启发补充。
2.一次函数最值问题的解决方法。
2.本节课渗透的数学思想方法。
(建立数学模型、数形结合、分类讨论)
3.关于这一课的知识你还有不明白的地方吗?如果有请提出来,让老师和同学帮你解决.
八年级数学教学设计7
一、教学目标
1、知识与技能:主要内容包括“分式” “ 函数及其图象”“全等三角形” “平行四边形的判定” “数据的整理与初步处理”共五章,各章都力图讲清知识的来龙去脉,将知识的形成和应用过程呈现给同学们。
2、过程与方法:
[1] 经历“观察————探索————猜测————证明”的学习过程,体验科学发现的一般规律。
[2] 通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。
3、情感态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
二、内容分析
第十七章 分式是是代数式中重要的基本概念;分式的概念、分式的基本性质及约分、通分等变形,是全章的理论基础,分式的加、减、乘、除及乘方运算,是全章的重点内容,分式方程的概念,主要涉及可以化为一元一次方程的分式方程。解分式方程时,应用化归思想,并且要注意检验是必不可少的步骤。本章应尽可能采用类比方法学习,联系实际,培养学生有条理的思考与表达。同时培养学生的阅读理解和多角度思考问题的能力。
第十八章 函数及其图象通过对变量的考察,体会函数的概念,并进一步研究一次函数、反比例函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数、反比例函数的概念,并进行探索一次函数、反比例函数的图象及其性质,最后利用一次函数、反比例函数及其图象解决有关现实问题。
第十九章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,比较严格地证明全等三角形的性质,探索三角形全等的条件。
第二十章 平行四边形的判定将在上册学习平行四边形性质的基础上,充分运用图形的变换探索发现判定平行四边形的方法,合理运用几何证明所得数学结论,努力实现合情推理与演绎推理的有机结合。
第二十一章 数据的整理与初步处理是在前几册统计与概率内容的基础上,使学生学会选用合适统计图表,进行数据整理,清晰而又准确地表示所收集的数据,同时通过情境引入平均数、中位数与众数以及方差、极差与标准差,较为正确地比较所得数据,使学生掌握分析处理数据的基本方法,用数学语言表述自己的见解。
三、采取措施
1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。
4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。
5、教学中注重自主学习、合作学习、探究学习。
6.经常听取学生良好的合理化建议。
四、课时安排
第17章 分式 10课时
第18章 函数及其图象 16课时
第19章全等三角形 16课时
第20章平行四边形的判定 12课时
第21章数据的整理与初步处理 14课时
课题学习 4课时
小结与复习
八年级数学教学设计8
教学目标:
1、理解一次函数与正比例函数的概念以及它们之间的关系;
2、能根据问题信息写出一次函数的表达式,并会运用一次函数解决简单的实际问题;
3、经历一次函数概念的认识,和利用一次函数解决实际问题的过程,逐步认识利用函数观点认识现实世界的意识和能力。
教学重点:
一次函数的概念以及一次函数和正比例函数的关系。
教学难点:
理解一次函数和正比例函数的关系。
教学方法:
引导发现、探究指导
学习方法:
自主学习、合作学习
教学工具:
多媒体
教学过程:
一、情景引入
母亲节快到了,红红想送一大束康乃馨给妈妈,花店老板告诉她,若买10支以及10支以下,每支3元,买10支以上,超过的部分打8折,如果红红买了x支康乃馨(x>10),付给老板y元钱,请写出y与x之间的函数关系式。
二、探究新知
1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式?
(1)有人发现,在20~25时蟋蟀每分鸣叫次数c与温度t(单位:)有关且c的值约是t的7倍与35的差;
(2)一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值;
(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0。1元/min收取);
(4)把一个长10 cm,宽5 cm的矩形的长减少x cm,宽不变,矩形面积y(单位:cm2)随x的值而变化。
2、这些函数解析式有哪些共同特征?
3、你能仿照正比例函数的概念,归纳总结出一次函数的概念吗?
4、一次函数和正比例函数有什么关系?
三、展示归纳(学生做后,解答过程学生说老师写,发动学生纠正和完善并总结归纳出一次函数的概念)
1、学生先用独立思考,在进行小组讨论,老师准备板书,巡回指导,了解情况;
2、学生逐一回答,其他学生逐一补充完善;
3、教师火龙点睛,强调关键。
四、练习巩固(过渡语:了解了一次函数的概念之后下面老师就来检验一下同学们,看看同学们能判断一个函数是一次函数吗?)(每个练习先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动学生评价完善,教师强调关键地方,在进行下一个练习)
练习1下列函数中哪些是一次函数,哪些又是正比例函数?
(1)y=—8x;(2)y=—;(3)y=5 x+6;(4)y=—0。5x—1;
(5)y= —1;(6)y= —13;(7)y=2(x—4);(8)y=
练习2已知一次函数y=kx+b,当x=1时,y=5;当x=—1时,y=1。求k和b的值。
五、小结与归纳(由学生来陈述,百花齐放。教师不做限定,没说到的,教师补充。)
1、通过本节课的学习,你有何收获?
2、反思一下你所获得的经验,与同学交流!
六、作业:必做题:教科书第91页第3题;
选做题:请写出若干个变量y与x之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项。
七、板书设计(以课堂生成为准)
八、课后反思:
在上一节课,学生整体感受了研究函数的一般思路与方法,但在具体知识理解的深度上还是不够,尤其作业上学生对概念中的自变量的次数理解不够到位。在这节课的学习中,应当促进学生从整体把握的高度深刻的理解一次函数与正比例函数的概念以及它们之间的关系。在概念的学习中,教师对学生提供的经验性材料太少,仅从正面入手不足以使学生真正理解概念,还必须从侧面和反面来理解概念,通过多举例,多练习来巩固概念。
教学中,需要分清并抓住本质现象,鼓励学生用自己的语言阐述自己的看法,学生在经历大量源自实际背景下的解析式的分析比较后,抽象概括出它们的一般结构,从而形成一次函数的概念,教师在强调概念需要注意和容易出错的地方。在知识的获取过程中,始终交织着旧知与新知、变与不变、相同与不同的对立与统一,这些都触动着学生对数学学习的情感。
另外,课前备学生是十分必要的,只有充分了解学生,课时尽量关注每一个学生,做到心中有学生,使每一个学生都参与课堂活动中来,让他们感受到自己是这节课的主角,从而学习数学的积极性提高,降低两极分化。
八年级数学教学设计9
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念、
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力、
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想、
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣、
(2)在解决实际问题的过程中,体验数学学习的实用性、
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题、
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题、
教学准备:
多媒体课件
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点
食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于
是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算、
学生汇总了四种方案:
(1)(2)(
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,
情形(2)中A→B的路线长为:AA’+πd/2
所以情形(1)的路线比情形(2)要短、
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短、
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB。
得出结论:利用展开图中两点之间,线段最短解决问题、
在这个环节中,可让学生沿母线剪开圆柱体,具体观察、
接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,π取3,则。
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1、甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h的速度向正东行走,1小时后乙出发,他以5km/h的速度向正北行走、上午10:00,甲、乙两人相距多远?
2、如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离、
3、有一个高为1。5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0。5米,问这根铁棒有多长?
第五环节课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)
内容:
作业:1、课本习题1、5第1,2,3题、
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
八年级数学教学设计10
第一课时
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
3、难点的突破方法:
首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?
通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。 要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。能否由99?61100?62?得出第二小组平均成绩这样的结论?为什么?这个例子22
简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P137例1的作用如下:
(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?
x=1(79+80+81+82)=80.5 4
五、例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果求这些灯泡的平均使用寿命?
答案:1.x小关 =79.05 x小兵 =80 2. x =597.5小时
七、课后练习:
1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .
2、某人打靶,有a次打中x环,b次打中y环,
则这个人平均每次中靶
3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占
试判断谁会被公司录取,为什么?
4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人? 答案:1.2x1?3x2?4x3?5x4ax?by2.3.x甲=86.9 a?bx1?x2?x3?x4
x2 =96.5
乙被录取
板书设计:
教学小记:
4. 39人
八年级数学教学设计11
新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定八年级第二学期数学教学设计方案:
一、指导思想
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
本期我继续授八(二)班数学,本班学生数学成绩两极分化比较严重,不少同学基础很差,问题较严重。在上学期镇组织的期末统考中,本班数学只是位列中上游,要在本期获得理想成绩,师生需加倍努力,补缺补差,注重方法,夯实基础。
三、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十六章二次根式
本章是在数的开方的基础上展开的,是算术平方根概念的抽象与扩展。本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
第十七章勾股定理
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章平行四边形
本章的主要内容是认识平行四边形及几种特殊的四边形,通过对图形的操作或度量,让学生直观认识图形的性质,通过逆命题的猜想、操作验证和逻辑推理的证明等过程,让学生理解并掌握几种图形的判定方法,提高数学思维能力。
第十九章一次函数教研专区全新登场教学设计教学方法课题研究教育论文日常工作
本章的主要内容是函数的基本知识,以及一次函数的图象、性质和简单应用。函数是数学中重要的基本概念之一,它揭示了现实世界中数量相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。本章是学习函数的入门,也是进一步学习函数的基础。
第二十章数据的分析
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
四、教学目标和要求
注重基础知识的教学和基本能力的培养,面向全体学生,缩小两极分化,尽力使后进生能迎头赶上,大面积提高教学质量。
五、提高教学质量的主要措施:
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
4、培养学生良好的学习习惯。陶行知说:
教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。这些习惯包括
①认真做作业的习惯,包括作业前清理好桌面,作业后认真检查;
②预习的习惯;
③认真看批改后的作业并及时更正的习惯;
④认真做好课前准备的习惯;
⑤在书上作精要笔记的习惯;
⑥妥善保管书籍资料和学习用品的习惯;
⑦认真阅读数学教材的习惯。
八年级数学教学设计12
【教学目标】:
1、掌握幂的乘方的运算性质,理解其推导过程。
2、会利用幂的乘方运算性质进行计算。
3、会逆用法则
【教学重点】:
了解幂的乘方的运算性质,会进行幂的乘方运算
【教学难点】:
幂的乘方与同底数幂的乘法运算性质区别。
【教学过程】:
一、回顾
1、口述同底数幂的乘法法则
2、说出(am)表示的乘方的意义
二、计算观察,探索规律
1、做一做:根据乘方的意义及同底数幂的乘法填空:
(1)(23)2=___________(根据幂的意义)=_________(根据同底数幂的乘法法则)=
(2)(a4)3=___________(根据幂的意义)=_________(根据同底数幂的乘法法则)=
(3)=_________×__________=____________(根据)=
(4)(am)5=_____________________ =___________________=
2、类比上面的式子尝试写出:(am)n=a()
提出问题:
(1)同学们通过上述这几道题的计算?观察一下,这几道题目有什么共同特点?
(2)请同学们看一看自己的计算结果,想一想,这些结果有什么规律?
教师活动:组织学生进行思考与交流,让学生通过讨论、争议、探求出规律。
设计意图:学生通过“做一做”以及探索规律,充分应用乘方的意义和同底数幂的乘法法则导出规律:
概括
设计意图:通过问题的提出,再依据“做一做”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动构建,获得新的知识:幂的乘方,底数不变,指数相乘。
三、举例应用:
例1、计算
① ② ③
设计意图:要求学生小组讲练,说明每一步的理由。
例2、计算:
①—(a2)7 ②[—(a2)]3 ③(—6)23
要求学生先独立思考,在小组讨论,组间互相点评(设计意图:加深难度,提高应用能力)
四、随堂练习,巩固新知
闯关游戏:
1、小试牛刀 下列各式对吗?请说出你的观点和理由:
(1)(a4)3=a7(2)a4 a3=a12
(3)(a2)3+(a3)2=(a6)2(4)—(a3)4=a12
2、乘胜追击
⑴(a2)3(2)x4 x4(3)-(y7)2
(4)[(x+y)3]4(5)[(a+1)3]n
3、一举夺魁
思路点拨:准确应用幂的运算法则中的幂的乘法与幂的乘方,并注意这两者之间的区别。灵活运用公式。
1、若(x2)n,则n=
2、若mx = 2,my = 3,则mx+y =____,m3x+2y =______
3、若272=m3=n6,则m= ,n= 。
五、作业布置:P104 习题14.1第2题。
六、小结
1、幂的乘方法则:(am)n=amn(m、n为正整数)
使用范围是:幂的乘方。
方法是:底数不变,指数相乘。
2、知识拓展:这里的底数、指数可以是数,也可以是字母,也可以是单项式和多项式。
3、幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”。
①已有知识经验
学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。
②学习方法和技巧
自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。
③个性发展和群体提高
新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。
八年级数学教学设计13
教学目标
①从学生熟悉的情境出发,经历从图中分析变量之间关系的过程,理解函数图象的意义。会对实际生活中的例子用两变量之间关系的图象进行描述表达,初步认识函数与图象的对应关系。
②学会观察图象、识别图象及理解图象所表示的含义。了解图象的意义及其与实际轨道之间的关系和区别。
③渗透数形结合思想,体会到数学来源于生活,又应用于生活。培养学生的团结协作精神、探索精神和合作交流的能力。
教学重点与难点
把实际问题转化为函数图象,再根据图象来研究实际问题。
教学准备
三角尺、CAI课件。
教学设计
提出问题
下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t的变化而变化。你从下图中得到哪些信息?
注:挖掘和利用现实生活中与函数图象有关的背景,让学生在观察背景中认识、理解函数的图象。
“做一做”解决生活中的数学问题,为的是进一步理解函数图象的意义。引导学生主动参与学习过程,从而培养合作交流能力。
解决问题
下面的图象反映的过程是:小明从家里出发去菜地浇水,又去玉米地锄草,然后回家。其中x表示时间,y表示小明离他家的距离。
根据图象回答下列问题:
1、菜地离小明家多远?小明走到菜地用了多少时间?
2、小明给菜地浇水用了多少时间?
3、菜地离玉米地多远?小明从菜地走到玉米地用了多少时间?
4、小明给玉米地锄草用了多少时间?
5、玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
注:以课本例题中的实际生活问题为素材,使学生感受到数学来源于生活,激发学生学数学的兴趣。师生共同参与合作,完成几个问题的探讨。体现了以学生为主体,教师成为问题解决的组织者、引导者与合作者这一新课程教学理念。
总结归纳
围绕下面两点,以师生共同交流的方式进行归纳:
(1)函数图象会使函数关系更为清晰,怎样画出函数的图象呢?
(2)如何根据函数图象中获得的信息来研究实际问题?
注:进一步加深对函教图象的理解。
布置作业
1、必做题:教科书P、109 习题11、1第5题。
八年级数学教学设计14
一、常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:
一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、函数值:
函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值
例如:在正方形的面积公式S=a2中,若a=2;则S=4;若a=3,则S=9,这说明4是当a=2时的函数值,9是当a=3时的函数值
六、函数有三种表示形式:
(1)列表法 (2)图像法 (3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、一次函数与正比例函数的图象与性质
一次函数概念
如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.
图 像
一条直线
性 质
k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大).
直线y=kx+b(k≠0)的位置与k、b符号之间的关系.
(1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
(5)k<0,b<0 (6)k<0,b=0
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
5.一次函数与二元一次方程组:
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点
解方程组
从“形”的角度看,确定两直线交点的坐标.
十、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标
3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围
八年级数学教学设计15
教材分析
1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
教学过程
八年级数学教学设计16
教学目标
1.使学生理解和掌握两个数的公因数和最大公因数的概念。
2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.通过数学学习活动过程,训练学生思维的有序性和条理性。
教学重难点
最大公因数的求法。
教学工具
ppt课件
教学过程
(一)、复习旧知,为新知打好铺垫
1、师:前面,我们已经学过有关因数的知识,你能举例说一下什么叫做一个数的因数吗?(学生举例。)谁还能像刚才那位同学举例说一下?
2、理解了什么是一个数的因数,你能找出8的因数有哪些吗?(找同学回答)师:这位同学找全了吗?这位同学做到了既不重复也不遗漏。你能介绍一下你找因数的方法吗?表扬:讲的太清楚了,让我们把掌声送给这位同学。(或:思考一下,怎样找一个数的因数才能做到既不重复也不遗漏。)
哪位同学能用这样的方法找出12的因数呢?
师:看来大家对因数的知识掌握的非常的牢固,今天要学的新知识就和因数有着密切的联系。
(二)、创设情境,引导动手操作
同学们喜欢做游戏吗?下面,我们就来通过做一个小游戏来学习新知识。
1、教师出示7张数字卡片。(1、2、3、4、6、8、12)
(1)请7位同学上台任选一张卡片。记清你卡片上的数字,把你的数字卡放在胸前,面朝大家。
(2)是8的因数的请站在左边,是12的因数的请站在右边。
同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(3)同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(4))师问:你们发现了吗?
(5)师:1、2、4既是4的因数,又是12的因数,用句简单的话说:1,2,4是8和12公有的因数,8和12公有的因数叫做它们的公因数。
(7)4是8和12最大的公因数,我们就把4叫做它们的最大公因数。
(8)这就是我们这节课要学习的内容《最大公因数》。
(9)板书课题:最大公因数。
(10)除了用上面这种方法表示公因数
我们还可以用前面学过的集合圈的形式表示。
(三)、合作交流、探索方法
1、小组合作:求出18和27的最大公因数。
现在,同学们知道了什么是公因数和最大公因数,那你能试着求出18和27的最大公因数吗?
合作要求:(四人一组)
(1)讨论用什么方法求出两个数的最大公因数。
(2)在答题纸上写出你们组是怎样找这两个数的最大公因数的。
2、汇报交流反馈。
方法一:现分别写出18和27的因数,再圈出公有的因数,从中找出最大公因数数。同学们真是太棒了!其他小组,还有不同的方法吗?
方法二:先找出18的因数:1,2,3,6,9,18.再看看18的因数中有哪些是27的因数,最后看哪个最大。(或者是:先找出27的因数:1,3,9,27;再看看27的因数中有哪些是18的因数,最后看哪个最大。)
方法三:先写出18的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18的因数是不是27的因数,9是27的因数,所以9是18和27的最大公因数。
4、这些方法都属于列举法,在解决问题时你可以选择自己喜欢的方法。
5、观察两个数的公因数和它们的最大公因数,你有什么发现?(两个数的公因数也是它们最大公因数的因数。)
(四)、拓展延伸。
刚才,同学们表现得都特别的好,接下来是不是会表现的更出色呢?
老师相信,接下来你们会用自己出色的表现,证明优秀的自己!
1、求出4和8、16和32的最大公因数,思考你发现了什么?
教师对学生的发现概括总结,并课件出示发现:如果较小数是较大数的因数,他们的最大公因数是较小数
2、求出2和7、8和9的最大公因数,思考你发现了什么?
发现:如果两个数只有公因数1,它们的最大公因数就是1.
3、教师总结:通过刚才的学习我们知道了求最大公因数共有3种情况。
(3种:成倍数关系的;公因数只有1的;一般情况。)
两个数成倍数关系和公因数只有1时可以直接判断出最大公因数。一般情况的采用列举法求出最大公因数。)
(五)、巩固提高。
刚才大家不仅展现了自己的数学才能,还突显了自己的探索能力,那么,我相信老师带来的这些问题同学们就更不在话下了。
1.填空。
(1) 10和15的公因数有_____________。
(2) 14和49的公因数有_____________。
2.选出正确答案的编号填在横线上。
(1) 9和16的最大公因数是______。
A. 1 B. 3 C. 4 D. 9
(2) 16和48的最大公因数是______。
A. 4 B. 6 C. 8 D. 16
(3)甲数是乙数的倍数,甲、乙两数的最大公因数是______。
A. 1 B.甲数C.乙数D.甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
五、全课总结。
师:同学们,这节课马上要结束了,能说说你们的收获吗?
同学们的收获真多,除了用我们这节课学习的列举法求两个数的最大公因数,老师这里还有两种更简便的方法求最大公因数,给大家分享一下。
一种是:分解质因数求最大公因数的方法,课件演示。
另一种是:短除法
这两种方法我们只是了解一下,在这里就不具体研究了,有兴趣的同学下课后,可以自学教材61页的这部分知识。
八年级数学教学设计17
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学重点:二次根式混合运算算理的理解。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
一、情境诱导
《二次根式混合运算习题课》教学设计-杨桂花
二、练习指导
(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)
练习提纲:《二次根式混合运算习题课》教学设计-杨桂花
三、展示归纳
1、学生汇报解题过程,生说师写;
2、发动其他学生评价补充完善;
3、师画龙点睛强调:
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
四、变式练习
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)
《二次根式混合运算习题课》教学设计-杨桂花
五、小结
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)
六、布置作业
《二次根式混合运算习题课》教学设计-杨桂花
八年级数学教学设计18
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
八年级数学教学设计19
教材分析:
本节课是在学生已经学学会用计算器进行计算的基础上,通过用计算器计算来探索与发现算式背后的规律。教材例题3,先让学生用计算器计算前面三题,然后进行观察比较、分析思考,找出算式中蕴含的规律,再根据规律直接填出后面四道算式的得数。本节课的重点是鼓励学生对算式及其得数的特点进行比较,从中发现一些数学规律。教学时,充分利用学生已有的经验,放手让学生通过自主探索、合作交流等方式,比较算式的特点,从而发现一些数学规律。
教学内容:
苏教版义务教育教科书四年级数学下册第42页例3和“练一练”,完成第43页练习七第5-8题。(第四单元 第2课时)
教学目标:
1.使学生探索一些特殊算式计算的规律,能根据发现的规律写出同类算式或同类算式的得数,能用计算器验证一些算式计算得数的规律。
2.使学生经历用计算器计算、观察、比较和抽象、概括计算规律的活动,体会数学规律的发现过程,积累探索规律的经验,培养观察、比较和抽象、概括等思维能力,提升归纳推理能力。
3.使学生在发现一些特算式计算规律的观察中,感受数学的奇妙,产生对数学的好奇心,激发学生学习数学的兴趣和积极性。
教学重点:
用计算器计算、探索一些计算的规律。
教学难点:
发现、归纳算式的特点和蕴含的规律。
教学过程:
一、复习引入
1.师:上节课,我们认识了计算器,学会了用计算器进行计算。
出示题目:用计算器计算下面各题。
1236-564= 546×25= 1548÷43= 326+1856÷29=
学生独立完成。完成后,指名学生回答,并说说计算时的注意点。
【设计意图】通过用计算器进行四则运算的计算,为课堂中用计算器探索规律作准备。
2. 游戏激趣。
同学们,你们喜欢做游戏吗?我们用计算器玩“猜数字”游戏。
从“1—9”这9个数字中选一个你喜欢的数字记在心里,不能说出。接着,在你的计算器上连续输入9次,然后用它除以“12345679”,把得数告诉老师,老师就能知道你最喜欢的数字是几。同学们,相信吗?请你试一试。
【设计意图】利用游戏导入,激发学生的学习兴趣和求知欲。同时,也为新知设疑,为本节课的学习埋下伏笔。
3.导入新课。
今天我们要用计算器来寻找算式中的蕴含的规律,探索其中的奥秘。(板书课题:用计算器探索规律)
二、探究规律
1.教学例3。
出示第42页例3。
26640÷111=
26640÷222=
26640÷333=
学生读题,并要求用计算器独立计算。
交流汇报得数,教师板书。
26640÷111=(240)
26640÷222=(120)
八年级数学教学设计20
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点: 灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
八年级数学教学设计21
教学目标:
1、 认知目标:使学生通过操作,初步认识平行四边形,感知平行四边形的特征,会在方格纸上画平行四边形。
2、 能力目标:培养学生做中学的能力和抽象概括能力。
3、 情感目标:使学生形成初步的空间观念,感受数学与生活的联系。
教学重点:探究平行四边形的特征。
教学难点:会在方格纸上画平行四边形。
教具准备:硬直条做成的长方形、三角形、方格纸、8根吸管(6根长、2根短)剪刀等。
教学过程:
(一)创设情境,复习导入。
1、师:同学们,上节课我们认识了四边形,谁来说说四边形有什么特点?
2、师:我们学过的平面图形中,哪些图形是四边形?
3、出示一个长方形框架,师:谁来说说长方形有哪些特征?
(长方形对边相等,四个角都是直角)
赵老师会变魔术,我只要轻轻一动就能把这个长方形变成什么图形?请同学们仔细观察,变,师边说边拉动长方形框架,提问:现在变成了什么图形?(平行四边形)对,这节课我们就来认识平行四边形。
板书课题:平行四边形。
(二)引导发现,合作探究
(1)观察比较,感悟变化
1、请同学们再观察一遍,(师再演示一遍)长方形变成了平行四边形,你还发现了什么?你认为平行四边形的边和角有什么变化?
生1:我发现了长方形的一组对边变倾斜了,它们的对边还是相等的。
生2:我发现没有直角了,平行四边形有两个钝角和两个锐角。
师:你观察得真仔细。
(2)动手操作,感悟特征
1、刚才小朋友通过观察发现了平行四边形的这些特点,但这是用眼睛看的,是不是准确呢?你们想通过做实验来验证吗?下面我们就一起来验证平行四边形的特点。
探索平行四边形的特征。你们可以借助剪刀、直尺、三角板、活动角等工具,想办法来验证平行四边形的特点,看能不能发现平行四边形的其它秘密,比一比哪一组想出来的方法最多?(小组实验。)
2、汇报:小组派代表说说你是用什么办法验证平行四边形的特点?
生1:我用尺子量,发现了平行四边形对边相等。
生2:我们采用对折的方法,也发现了平行四边形对边相等。
生3:我用剪刀沿平行四边形的对角线剪下来,变成了两个完全一样的三角形,把两个三角形重合在一起,我发现了它的对边相等,一组对角也相等。
师:太棒了,这种方法不仅能证明平行四边形的对边相等(板书:对边相等),还发现了平行四边形的对角相等,谁还发现了平行四边形的角的特点?
生4:我用活动角先量平行四边形的一个角,再去量另一个对角,发现它的对角相等。
生5:我用剪刀把平行四边形的一个角剪下来,把这个角和它的对角比,发现两个角重合在一起,另个一组对角也用相同的方法来做,我们发现了平行四边形的对角相等。
师:能想出这么棒的办法来,真不简单。(板书:对角相等)
3、小结:小朋友可真了不起,先观察推测出平行四边形的特点,再自己动手做实验,验证并发现了平行四边形的这些特点,现在谁能用自己的话完整地说一说平行四边形的特点?
生:平行四边形的对边相等,对角相等。
那平行四边形还有哪些特点呢?
4、课件出示:这是哪?(出示学校门口伸缩铁门)你发现了什么?
生:铁门能伸缩。
师:这个铁门为什么能伸缩?我们再来做一个实验。
用小棒做一个三角形和一个平行四边形,再拉拉看,然后互相交流一下,你发现了什么?
汇报。请两个同学把你们拼的三角形和平行四边形拿上来拉拉看。
生:三角形拉不动,平行四边形一拉就变形。
师:老师在这个平行四边形的对角再摆一根小棒,变成了什么?
生:变成了两个三角形。
师:你再拉拉看,你发现了什么?
生:这样平行四边形就拉不动了。小结:三角形不易变形,比较稳定;平行四边形不稳定,容易变形。(板书:易变形)铁门能伸缩就是应用了平行四边形容易变形的特性。
(三)巩固提高
1、看来同学们已经和平行四边形交上朋友了,现在老师想来考考大家,请看屏幕(课件):下面哪些图形是平行四边形?老师随意指到一个图形,请同学们打手势,比一比哪个同学的反应最快?
2、知道了平行四边形的特征,你们能动手做出一些平行四边形吗?
生1:老师,我们组是动手画的平行四边形。(请小组内的代表上台演示)
生2:老师,我们组是动手剪的平行四边形。(请小组内的代表上台演示)
生3:老师,我们组是在钉子板上做出的平行四边形。(请小组内的代表上台演示)
师:刚才我们请个别同学介绍了他们的方法,如果有的同学还有不同的方法就和同学交流一下,如果刚才有的同学不会做的就选折一种同学们介绍的方法,自己动手做一个。(师个别指导)
3、拓展练习
(1)数一数下面图形中共有( )平行四边形。
(2)把下面的图形改为平行四边形。
(四)课堂总结,巩固新知
通过本节课的学习,你们学会了什么?还有什么问题吗?
八年级数学教学设计22
教材分析
《立方根》是义务教育课程标准实验教科书人教版版八年级(上)第十三章《实数》第二节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.
学情分析
在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及其唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.
教学目标
知识与技能目标
1.了解立方根的概念,初步学会用根号表示一个数的立方根.
2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质----唯一性.
4.区分立方根与平方根的不同.
5.分清两个互为相反数的立方根的关系,即
5.渗透特殊---一般的数学思想方法.
过程与方法目标
1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.
2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.
3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.
情感与态度目标:
1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.
2. 学生通过对实际问题的解决,体会数学的实用价值.
教学重点和难点
重点:立方根的概念及求法.
难点:立方根的求法,立方根与平方根的联系及区别.
教学过程
本节内容教学法为:类比法。
八年级数学教学设计23
教材分析
1本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
学情分析
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
教学目标
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
教学重点和难点
重点:能运用完全平方公式进行简单的计算。
难点:会推导完全平方公式
教学过程
教学过程设计如下:
〈一〉、提出问题
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答]分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一现身手
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、探险之旅
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
板书设计
完全平方公式
两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)2=a2+2ab+b2;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2
八年级数学教学设计24
一、教学任务分析
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
三、教学过程分析
本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、
第一环节:情境引入
情景1:复习提 问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现
数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)
情景3:课本引例(蚂蚁怎样走最近)
设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议
内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
设计意图:
运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、
第五环节:方程与勾股定理
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的`意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
八年级数学教学设计25
八年级数学上册13.1平方根教学反思
节主要介绍平方根与算术平方根的概念,先讲平方根,再讲算术平方根。平方根和算术平方根的概念属本章的重点内容。它是后面学习实数的准备知识,是学习二次根式,一元二次方程的基础。再下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打好基础。另外,从运算角度来看,加与减,乘与除,平方与开方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。在教材处理上,本节课我从学生的实际出发,设计了一系列教学活动,使学生能够在活动的过程中,主动发现,主动探索知识,以及主动建构所学知识的意义。本课时的重点是:使学生经历观察、探索、思考的过程,理解平方根的概念和求法。本课时的难点是:经历探索平方根性质的过程,并能合理清晰地表达自己的思维过程。在教学过程为落实双基,我注重以下几方面的处理:
1、 重视情景创设,激发学生的求知欲望。
平方根概念的引入,经历了由实验(你能将两个边长为1个单位长度的正方形纸片,剪一剪,拼一拼,得到一个面积最大的正方形吗?),到提出问题(面积为2的正方形,边长是多少呢?),再到解决问题(若设正方形的边长为x,则符合题意的方程为x2=2),最后归纳出问题的实质(要找一个正数,使这个数的平方等于2)。本环节通过学生动脑,动口,充分调动了学生学习的积极性,同时也激发了学生的求知欲望。
不足:本环节的实验是由学生在课下完成,再由教师选取优秀的拼法进行展示和解说,这样做忽略了学生的主体性,如果设计成由学生展示成果并解说,可能会收到更好的效果。
2、抓住概念的本质属性,让学生经历从量变到质变的过程,突破抽象观
平方根概念的得出过程,首先由教师提出设问:一张正方形桌面的边长为1.2m,面积是多少?一张正方形桌面的面积为1.44m2,边长是多少m?进一步提问:一个数的平方等于1.44,这个数是多少?然后由学生通过观察并进行举例,最后总结出平方根的概念。像这样由特殊到一般的推理方法,符合七年级学生的年龄特点,并能容易接受新知,从而达到较好的教学效果。同时这样做,也有利于激发学生饱满的学习热情,引导他们以积极的态度和旺盛的精力主动探索,并且在思考中感受思维的美,在探索解决问题中体验快乐,从而获得最佳效益。
不足:在归纳平方根的概念时,应该使学生加深对“根”字的理解,如果能再说明每一个平方根代表的含义,如2是4的一个平方根,-2是4的另一个平方根,4的平方根为±2.这样可能学生对于平方根概念的理解会更到位。
3、抓住概念的巩固与应用,根据学生实际,灵活调整课堂。
练习1、求下列各数的平方根:
八年级数学教学设计26
一、上学期学生学习情况及教学工作中存在问题:
上学期我从事八一、八二两个班的数学教学,从上学期期末考试成绩来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕,分析其原因,主要是练习的量太少,所以这学期的主要突破口是加大学生的练习力度。在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。在教学方面,平时对学生的练习抓的不够紧,以至有少数几个同学一学期基本没做几次作业,作业的数量也不够。
二、本学期教学内容及要求:
本学期教学内容,共计六章,第一章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应用.
第二章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法.第三章《分式》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题.第四章《相似图形》本章通过对两条线段的比和成比例线段等概念的学习,全面探索相似三角形、相似多边形的性质与识别方法.第五章《数据的收集与处理》主要是概念的理解与运用.第六章《证明一》本章主要内容是命题的相关概念、分类及应用.
重点(1)掌握不等式的基本性质,一元一次不等式(组)的解法及应用.(2)掌握分解因式的两种基本方法(提公因式法与公式法).(3)掌握分式的基本性质、四则运算、分式方程的解法及列分式方程解应用题.(4)成比例线段的概念及应用和相似三角形的性质和判定.(5)调查方法的应用.(6)命题的推理论证。
难点(1)对不等式的基本性质的理解和熟练运用,一元一次不等式(组)的应用.(2)提公因式法与公式法的灵活运用.(3)分式的四则混合运算和列分式方程解应用题.(4)灵活运用比例线段和相似三角形知识能力的培养.(5)几个概念的理解、区别和应用.(6)命题的推理论证。
以每周6课时计,每章结束进行一次单元测试,每月进行一次月考,让学生通过多训练来达到对知识的掌握。
三、本学期将采取的具体措施:
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的学习课堂氛围,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
四、本学期教学进度安排表:
略
20xx八年级下册数学教学计划【二】
一、 指导思想
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析
本学期教学内容共计六章。
第一章《三角形的证明》
本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》
本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》
本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》
本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》
本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
第六章《平行四边形》
本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
四、主要措施
1、面向全体学生。
由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。
教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
五、教学进度
第一章《三角形的证明》13课时
1.1等腰三角形 4课时
1.2直角三角形 2课时
1.3线段的垂直平分线 2课时
1.4角平分线 2课时
复习小节与检测 3课时
第二章《一元一次不等式和一元一次不等式组》 12课时
2.1 不等关系 1课时
2.2 不等式的基本性质 1课时
2.3 不等式的解集 1课时
2.4 一元一次不等式2课时
2.5 一元一次不等式与一次函数2课时
2.6 一元一次不等式组 2课时
复习小节 与检测 3课时
第三章《图形的平移与旋转》 10课时
3.1图形的平移 3课时
3.2图形的旋转 2 课时
3.3中心对称 1课时
3.4简单的图形设计 1 课时
复习小节与检测 3课时
期中考试复习2 课时
第四章《分解因式》7课时
4.1分解因式1课时
4.2提公因式法 2课时
4.3公式法 2课时
4.4重心 2课时
复习小节与检测 2课时
第五章《分式与分式方程》 11课时
5.1认识分式 2课时
5.2 分式的乘除法 1课时
5.3分式的加减法 3课时
5.4分式方程 3课时
复习小节与检测 2课时
第六章《平行四边形》 10课时
4.1平行四边形的性质 2课时
4.2特殊的平行四边形的判定 3课时
4.3三角形的中位线 1课时
4.4多边形的内角和外角和 2课时
复习小节与检测 2课时
综合实践(一)生活中的“一次模型” 1课时
综合实践(二)平面图形的镶嵌1课时
总复习 剩余时间
合计:授新:48课时,复习小节与检测 19课时。
六、培优辅差计划:
优生辅导:
对优生的辅导以课堂教学为主要形式,教师在课堂上要注意提问一些有针对性、概括性较强、难度较大的问题,培养优生的思维的敏感性,并且,课后对他们的作业布置也要有层次性,即让它们掌握扎实的基础知识,又要布置一些有一定难度的思考题,让他们“吃饱”。鼓励他们要利用业余时间多练习、多思考、多做一些课本之外的题目,进一步训练优生思维的灵活性,通过各种形式进行比赛,拓宽他们的知识面,开阔视野,让他们灵活地掌握知识。同时,在教学中要结合本教材中的思考题进行对优生的辅导,要让他们养成刻苦钻研、勤于思考、勇于创新的品质,培养他们热爱数学的兴趣。
后进生辅导:
他们在学习上总的特点是上课不注意听讲,智力一般,学习依赖
思想严重,没有独立思考勇于创新的意识,
1、与家长的多联系,让家长协助教师教育和督促学生努力学习。
2、课后多和差生交谈,使后进生愿意接近老师,经常和老师说
说心里话,有利于老师对学生的了解,有利于做好后进的转化工作。
3,开展互帮互学的活动,尽量给差生创设一个好的学习环境。
4、分层次设计目标,给差生制订能够完成的目标,使其能真正感到成功的喜悦。
5、对差生多表扬其闪光点,激发其上进心,批评时要恰当得体,切忌不可伤害,不能让其他同学嘲笑他们,嫌弃他们。
6、利用课余时间帮助差生辅导,尽力使他们的成绩有所提高,让他们认识到“我能行”。要在学习上,生活上关心每一个后进生的成长,使每个后进生真正感到班集体的温暖,激发他们的求知欲。
八年级数学教学设计27
教学目标
一、知识与技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点
正确寻找全等三角形的对应元素
难点突破
通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:
课件、三角形纸片
教学过程
一、出示学习目标
1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。
二、直观感知,导入新课
教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知
1.全等形
我们给这样的图形起个名称----全等形。[板书:全等形]
教师让学生们想生活中还有那些图形是全等形.
2.全等三角形及相关对应元素的定义
教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
[板书课题:12.1全等三角形]
2.全等三角形的对应元素及表示
把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
以多媒体上的图形为例,全等三角形中的对应元素
(1)对应的顶点(三个)---重合的顶点
(2)对应边(三条)---重合的边
(3)对应角(三个)---重合的角
归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
.用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
3.全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
4.小组活动合作升华
学生分小组动手操作摆图形
小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。
三、巩固练习
四、教师用多媒体展示习题,学生做巩固练习。
五、小结:本节课都学到了什么
六、作业:
必做题课本33页习题第1题、2题.
选做题课本第34页第6题。
八年级数学教学设计28
教学目标
1知识与技能:
通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
2过程与方法:
掌握用“四舍五入”法截取商的近似数的一般方法。
3情感态度与价值观:
在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
教学重难点
1教学重点:
掌握用“四舍五入”法截取商的近似数的一般方法。
2教学难点:
理解求商的近似数与积的近似数的异同。
教学工具
ppt、题卡
教学过程
教学过程设计
1复习旧知,揭示课题
1.按照要求写出表中小数的近似数。(PPT课件出示题目。)
2.求出下面各题中积的近似值。(PPT课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
2创设情境,自主探究
1.教学教材第32页例6。
爸爸给王鹏买了一筒羽毛球,一筒是12个,这筒羽毛球19.4元,每个大约多少钱?
19.4÷12 ≈ 1.62(元)
答:每个大约1.62元。
(1)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(2)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(3)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)
(4)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)
(5)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)
(3)引导学生交流、概括。(PPT课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
3巩固应用,内化方法
1.计算下面各题。
保留一位小数:4.8÷2.3≈ 2.1
保留两位小数:1.55÷3.9≈ 0.40
保留整数:14.6÷3.4≈ 4
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
2、选择。
(1)37.3÷2.7的商保留两位小数约是( C )。
A、13.82 B、13.80 C、13.81
(2)23.5÷0.91的商( B )23.5。
A、小于B、大于C、等于
3、完成教材第36页练习八第3题。
①学生独立练习,教师巡视,适时指导。
②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。
4、判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( √ )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( × )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( ×)
5、一支铺路队正在铺一段公路。上午工作3.5小时,铺了164.9 m;下午工作4.5小时,铺了206.7 m。是上午铺路的速度快,还是下午铺路的速度快?
①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)
②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。
③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。
上午铺路速度:164.9÷3.5≈47.1(m)
下午铺路速度:206.7÷4.5≈45.9(m)
47.1>45.9
答:上午铺路的速度快。
6、完成教材第36页练习八第4题。
(1)蜘蛛的爬行速度大约是蜗牛的几倍?
(2)你还能提出其他数学问题并解答吗?
①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。
②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。
③完成第(2)问:提出其他数学问题并解答。
课后小结
这节课我们学到了什么?有什么收获?
用四舍五入法取商的近似值,一般要除到被保留位数的下一位;也可以除到被保留的位数后,看余数与除数的关系(余数超过或等于除数的一半时,可直接向前一位进一,取商的近似值;如果余数不到除数的一半,则直接保留。)取商的近似值。
板书
商的近似数
爸爸为小明买了一桶羽毛球,一共12只,花了19.4元,每个多少元?
19.4÷12=1.6166666666667……(元)
1.看——需要保留几位小数或整数。保留两位小数:1.62
2.除——除到要保留位数的下一位。保留一位小数:1.6
3.取——用“四舍五入”法取商的近似数。
19.4÷12≈1.6(元)
答:每个约1.6元?
八年级数学教学设计29
能力目标
经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察能力。
情感目标
通过在教学中让学生分组合作,培养学生的团结协作意识。
教学重点
探索线段的垂直平分线的性质和判定定理。
教学难点
明确线段垂直平分线的性质和判定定理的区别并会将其灵活应用
教学方法及学法
采用“情境──探究”的引导发现方法,类比法,对比法的教法及自主探究与合作交流的学法。
教学过程
一、创设情景,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,1.什么样的图形是轴对称图形呢?2.什么是线段的垂直平分线呢?3.提出实际问题1,2PPT
今天继续来研究轴对称的性质(出示模型).
二、活动探究,探索新知
活动1(出示模型)
探究
如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?
1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、AP3/BP3..…
2.作好图后,用直尺量出AP1、AP2、BP1、BP2,AP3/BP3,在沿L对折验证AP与BP1。AP2与BP2是否重合
归纳图形轴对称的性质:
下面我们来探究线段垂直平分线的性质.
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…
你会证明这个性质吗?学生探究证明的过程
活动3
反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?
以小组为单位进行讨论,让后找学生回答。
在学生回答的基础上,教师进行补充,并总结出线段的垂直平分线的判定方法:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
上述探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
讲解课本上的例1并解决课上提出的实际问题1,2
三、练习巩固,体验收获
课堂练习:一张题纸5道题,最后一题是选做题
课堂小结:
1、本节中你学习了哪些内容?
2、你有哪些收获和体会?师生共同交流、总结。
八年级数学教学设计30
西安市第五十中学 王军利
初中生自制力较差,小组合作学习涉及人多,若组织不当就会使学生精力分散。所以在小组合作学习前就要明确任务要求,并及时检查、评价。在本节课的自主学习1、2过程中,学生明确了学习的任务要求,在检查反馈时学生掌握很好,从而增强了学生的成功感,激发了学习的兴趣,为下一个环节的进行做了良好的准备。
“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是 定义中指出的:“如果一个正数x的平方等于a,即x2= a,那么这个正数x就叫做a的算术平方根,”的 “正数x”,即被开方数是正的,由平方的 意义,a也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
不足之处:学生对 的算术平方根是___这类题掌握的不够,也许是教师讲的太快,有些学生没有完全理解;也有一些学生太马虎。总之,这类题应多强调多练习。
“加强训练”不但 指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根 ,非平方数的算术平方根只能用根号来表示.
八年级数学教学设计31
教学目标
掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。
教学重难点
学习重点理解将假分数化成整数或带分数。
学习难点掌握假分数化成整数或带分数的方法。
教学工具
PPT课件
教学过程
一、复习引入。(6分钟)
1.判断下面各数哪些是真分数,哪些是假分数。
1/7 3/2 4/9 12/47
教师根据学生的分类,把假分数取出来,让学生观察。
2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。
3.揭示课题:这节课我们来一起学习把假分数化成整数或带分数。(板书课题:真分数和假分数(2))。
二、探究新知。15分钟)
教学例3。
1.把3/3 8/4化成整数。
(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?
(2)讨论:如何把3/3、8/4化成整数?
2.把7/3 、6/5化成带分数。
(1)提问:7/3 、6/5的分子不是分母的倍数,这种情况怎样转化?
(2)交流讨论方法。
(3)学生在练习本上试着把化成带分数。
3.小结:把假分数化成整数或带分数的方法。
学案
1.根据真分数和假分数的意义进行分类,汇报交流。
2.交流假分数的分类情况。
3.明确本节课的学习内容。
1.(1)看课件,回答用3/3 、8/4表示。
(2)同桌讨论后交流:
①根据分数与除法的关系3/3 =3÷3=1,
②根据分数的意义是1,可以想3/3里面有3个1/3 。
2.(1)思考老师的提问。
(2)讨论后交流:
① 7/3是6/3和1/3合成的数,等于2 1/3 。
②也可以用7÷3=2……1,商2是带分数的整数部分,余数1是分数部分的分子,分母不变。
(3)学生独立练习,集体订正。
3.师生共同小结。
三、巩固练习。14分钟
1.完成教材第54页“做一做”第2题。
2.完成教材第55页第4,第56页第6题。
四、课堂总结。(5分钟)
1.通过本节课的学习,大家学习了假分数化成整数或带分数的方法,希望同学们学以致用,体会学习数学的乐趣。
2.布置课后学习内容。
课后小结
本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。
课后习题
1.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
1.读出下面的带分数。
3 1/8读作:_____________
70 3/57读作:_____________
2 4/79读作:_____________
2.写出下面的带分数。
八又七分之三
写作:_____________
十五又六分之一
写作:_____________
二十三又四分之三
写作:_____________
答案:8 15 23
3.填一填。
(1)23÷9= ( )/( )
(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )
(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。
4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)
答:张师傅做得快。
板书
假分数化成整数或带分数的方法:
用分子除以分母,
当分子是分母的倍数时,
能化成整数,商就是这个整数;
当分子不是分母的倍数时,能化成带分数,
商是带分数的整数部分,余数是分数部分的分子,分母不变。
八年级数学教学设计32
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和.的应用.
教学难点:探索多边形的内角和与外角和公式过程.
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?
八年级数学教学设计33
一、教学目标
1掌握平行四边形、菱形、矩形、正方形、梯形的概念,了解它们之间的关系。
2.探索并掌握平行四边形、菱形、矩形、正方形、梯形的有关性质和常用判别方法。
3.探索并了解多边形的内角和外角和公式,了解多边形的概念。
4.通过探索平面图形的密铺,了解三角形、四边形、正六边形为什么可以密铺,能运用这三种图形进行简单的密铺设计.
二、教学设想
本章主要学习了平行四边形、菱形、矩形、正方形、梯形的有关性质和常用判别方法,并进行简单的推理。且包括的知识点较多,学生要系统的掌握困难较大。所以在完成本章知识复习的教学中,为了培养学生的合情推理能力,增强其简单逻辑推理意识,及梳理知识的能力,就在导学案模式下利用学生自主发展小组我对本节课做了以下设想:首先鼓励学生独立对所学知识进行整理,制作个性化的知识结构图,并进行学生自主发展小组评优,再每组展示最优的结果;其次,教师则根据所复习的知识点及学生的实际情况,提出问题让学生合作探究,并适时加以点拨纠正。最后出示一些有拓展性的习题,拓宽学生的知识面,提高应用知识的能力。最后,通过检测中暴露出来的问题,出一些针对性的训练题,有重点地针对薄弱环节进行强化训练,学生再针对本节课谈谈自己的收获和困惑。
三、教材分析
本章内容主要从多角度引导学生总结四边形的性质及其常用的判别方法,并能进行简单推理,重点体现四边形与三角形的紧密联系,这就需要学生把本章所学的知识点连成线再织成网,形成结构严谨的知识系统,获得知识的自主构建过程。为此本节课主要有两个任务:四边形性质及其判别方法的知识系统的建构以及对典型例题的解析。
四、重点难点
重点:平行四边形、菱形、矩形、正方形、梯形的概念、性质、判别方法及初步应用。
难点:应用特殊四边形的性质及判别解决有关问题。
五、教学方法
1. 独立制作知识结构图,再小组合作讨论交流的方式进行最优评价。
2.按照本课时导学案的提示完成导学案,A类学生讲其他学生及时补充。
3.展示学生制作的知识结构图并及时作出评价。
4.典型习题让学生先分析讲解教师进行点评和补充。
六、教学反思
复习课大多是以解题为主或是教师板书本章节所学的知识点占据整个课堂,而本次我改变以往的做法,先独立总结、再小组讨论评价评出最优、再展示最优、最后有学生评价并补充.紧接选择有针对性的训练题,有重点地对学生的薄弱环节进行强化训练。在此过程中学生基本上能做到如何分析,改用什么知识点来解决问题,集中出现的问题是知识的灵活应用不够强、书写格式不够完整,所以在以后的教学中,应增加书写练习,是学生更加熟练。
八年级数学教学设计34
教学目标:
(一)教学知识点
1、菱形的定义。
2、菱形的性质。
3、菱形的判定。
(二)能力训练要求
1、经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法。
2、了解菱形的现实应用和常用判别条件。
(三)情感与价值观要求
1、在操作活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。
2、在学习过程中,来体会菱形的图形美和内在美。
教学重点:菱形的性质及判定方法。
教学难点:菱形性质和直角三角形的知识的综合应用。
教学过程:
一、巧设情景问题,引入课题
前面我们探讨了平行四边形的性质和判别条件,下面我们来共同回忆一下。大家来看一个衣帽架(出示衣帽架,并按课本P93的图片进行变换),这个衣帽架中有你熟悉的图形吗?(邻边相等的平行四边形。)我们把这样的平行四边形叫做菱形。这节课我们就来探讨一下菱形。
二、新课
你能给菱形下定义吗?(一组邻边相等的平行四边形叫做菱形。)菱形是一种特殊的平行四边形,特殊之处在于它是有一组邻边相等。所以菱形是具备:“①平行四边形,②一组邻边相等”。这两个条件的四边形。下面大家画一个菱形,然后回答下列问题
如图,在菱形ABCD中,AB=AD,对角线AC、BD相交于点O。
(1)图中有哪些线段是相等的?哪些角是相等的?(2)图中有哪些等腰三角形、直角三角形?
(3)两条对角线AC、BD有什么特定的位置关系?(同学们讨论分析回答)
同学们分析得很好,能否从中归纳出菱形的性质呢?
因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:
1、菱形的四条边都相等。
2、菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?
(菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直。)
同学们回答得很好,我们知道了菱形的性质,那想一想如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?大家拿出准备好的白纸,小剪刀来动手做一做。
(学生想——动手折、剪,教师指导,然后出示两种及学生总结的折纸、剪切的方法)
方法一:将一张长方形的纸横对折,再竖对折(如P92的图),然后沿图中的虚线剪下,打开即是菱形纸片。
方法二:如图(P94的图),两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形。(如图1)
方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形。(如图2)
你能说一说按这三种方法做的理由吗?大家讨论一下回答。
方法一主要是利用了菱形的轴对称性。按方法一剪出如图所示的图形。以BD所在的直线对折时,OA=OC,以AC所在的直线对折时,OB=OD,这时四边形ABCD是平行四边形,又因为两条折痕是互相垂直的,即:AC⊥BD,又OA=OC,所以BD是AC的中垂线。即AB=BC,因此平行四边形ABCD是菱形。
按方法二得到的四边形是菱形的理由是:这个四边形的两组对边分别在纸条的边缘上,它们彼此平行,它是平行四边形;分别以一组邻边为底写出这个平行四边形的面积(都是底乘高),再由纸条等宽即它们的高相等,立即得到这组邻边相等。
按方法三得到的菱形的理由是:如图2,△ABC是以BC为底的等腰三角形,所以AB=AC,以BC为折痕,对折后,得到的三角形BCD仍是等腰三角形,即:BD=DC,又因为AB=BD,DC=AC,所以AB=CD,BD=AC,所以四边形ABDC是平行四边形,又AB=AC,因此,平行四边形ABDC是菱形。
刚才通过折纸、剪切,得到了菱形,你能因此归纳一下菱形的判别方法吗?分组讨论,然后总结:菱形的判别方法:
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边都相等的四边形是菱形
(要注意的是:菱形的判别方法的题设条件是平行四边形还是任意四边形。)
好,下面大家完成P94的议一议)。
三、应用
例1、(书上95页例1)
[师生共析]从图中知道:AC与BD是相交,从已知条件:AB=,OA=2,OB=1。结合图形知道:这三条线段正好构成三角形。又由于AB2=OA2+OB2,所以可以知道:△AOB是直角三角形,因此可以得出:AC与BD互相垂直。
由于四边形ABCD是平行四边形,它的对角线互相垂直,所以由此可知:平行四边形ABCD是菱形。
[例2]如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于F,交AC于E,若EG⊥BC于G,连结FG。
求证:四边形AFGE是菱形。
分析:要判别四边形AFGE是菱形,要先证它是平行四边形,然后再寻找邻边相等的条件,而要证明它是平行四边形,要找出平行四边形的判定条件。
四、小结
本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下:
菱形的定义:一组邻边相等的平行四边形是菱形。
菱形的性质:边:四条边都相等
对边分别平行
角:对角线相等
对角线:互相垂直、平分,每一条对角线平分一组对角。
菱形的判定:
五、课后作业:
教学反思:菱形是特殊的平行四边形,然后让学生自主探索菱形除平行四边形具备的性质外它本身所具有的特殊性。发展学生合情的逻辑推理过程,逐步规范格式。相关的计算要注意规律。从本节课内容来看要求比较高。基础差一点的同学掌握起来是略为困难了些。
八年级数学教学设计35
【教学目标】
1、知识技能:学生通过自主实践与探索,了解正多边形的概念,发现并理解用一种或两种正多边形能够镶嵌的规律、
2、数学思考:通过学生欣赏图片、动手拼、动脑想、相互交流、展示成果等活动,引导学生解决使用一种或两种正多边形镶嵌的问题,让学生理解正多边形镶嵌的原理、
3、解决问题:用一种或两种正多边形能够镶嵌需满足哪些条件?会运用正多边形进行简单的平面镶嵌设计。
4、情感态度:关注学生的情感体验,让学生在充分感受到数学美的同时,认识到数学来源于生活并应用于生活、让学生在数学实验过程中体验合作与成功的喜悦,增强学生对数学的好奇心和求知欲、
【教学重点、难点】
重点:探究用一种或两种正多边形镶嵌的规律、
难点:学生通过数学实验操作发现用正多边形能够镶嵌的规律、
【教学准备】
边长均相等的正三角形、正四边形、正五边形、正六边形、正八边形及任意的但大小、形状完全相同的三角形、四边形纸片若干张、
【教学流程】
活动1:欣赏图片,交流讨论,引出概念
活动2:探索仅用一种正多边形镶嵌的规律
活动3:探索用两种正多边形镶嵌的规律
活动4:应用并设计正多边形镶嵌的图案
(若设计有困难,就欣赏已设计好的图案)
活动5:小结,布置作业
【教学过程】
活动1:
1、图片欣赏
①如图,正三角形、正方形、正六边形是我们熟悉的特殊多边形。这些图形中的边与角分别有什么共同的特征?
正三角形、正方形、正六边形
我们把各边相等、各内角也相等的多边形叫做正多边形。边数为五、七、八的正多边形分别是正五边形、正七边形和正八边形。
②从镶嵌艺术作品到一些生活墙壁中的、地板铺设图案。
2、交流讨论
学生直观感受数学美的同时,引导学生思考:这些图案都是由哪些基本的平面图形构成的?(正三角形、正方形、正五边形、正六边形)学生细心观察后发现,图案中的平面图形有的规则,有的不规则;有的用一种多边形拼成,有的用多种多边形拼成,培养学生分类的思想、
3、感知概念
讨论这些图形拼成一个平面的共同特征,注意到各图形之间没有空隙,也没有重叠、在充分交流的基础上,用自己的语言概括镶嵌的概念(象这种既无缝隙又不重叠的铺法,我们称为平面的镶嵌)、教师给予鼓励和评价、
4、提出问题
提问:如果让你们设计几种地板图案,需要解决什么问题?学生自主探索,分组研究需要探讨的问题,教师做适当引导、把其中可能列举的典型问题设想如下:(1)怎样铺设可以不留空隙,也不相互重叠?(2)可以用哪些图形?(3)用前面所学的正多边形能否拼成一个平面图形?(4)哪些正多边形可以镶嵌成一个平面,哪些不能?根据学生提出的以及本节课需要解决的问题,首先引导学生研究最简单的镶嵌问题、
活动2:
探索仅用一种多边形镶嵌,哪些正多边形可以镶嵌成一个片面图案、动手实验
全班分成九个小组,拿出课前准备好的正三角形、正四边形、正五边形、正六边形,以小组为单位进行比赛,看哪个小组拼得又快又好,并派代表在投影仪上展示他们的成果、收集数据
根据刚才的动手实验,引导学生收集数据,观察结果、
正n边形每个内角的度数使用正多边形的个数结果n=360°6能拼好n=490°4能拼好n=5108°3不能拼好,有缺口4不能拼好,有重叠n=6120°3能拼好分析数据
引导学生分析收集的数据,寻找其中的规律、
n=360°×6=360°360°能被60°整除n=490°×4=360°360°能被90°整除n=5108°×3<360°360°不能被108°整除108°×4>360°n=6120°×3=360°360°能被120°整除实验思考
让学生思考为什么有的正多边形能进行镶嵌,而有的正多边形不能?用一种正多边形镶嵌需要满足什么条件呢?
得出结论
学生根据自己实验的结果,不难得出结论:
正三角形、正四边形、正六边形能够镶嵌,正五边形不能镶嵌、
用一种正多边形镶嵌,则这个正多边形的内角度数能整除360°、
延伸拓展
问:如果用一种多边形进行镶嵌时不采用正多边形,而改为任意多边形,有没有这样的多边形?有,请指出,并说明理由、
结论:有,分别是三角形、四边形,但三角形、四边形各自应形状、大小完全相同、
理由:三角形、四边形的内角和均能整除360°、
活动3:
质疑
思考:用两种正多边形镶嵌需满足什么条件?
猜想
对于正三角形、正四边形、正五边形、正六边形、正八边形,哪两种正多边形能进行镶嵌?
操作
学生拿出课前准备好的这些正多边形,仍然以小组为单位进行拼图,看哪些能用来搭配镶嵌成一个平面。(边做边记录)
结果
(1)3个正三角形与2个正四边形60°×3+90°×2=360°
(2)2个正三角形与2个正六边形60°×2+120°×2=360°
(3)4个正三角形与1个正六边形60°×4+120°×1=360°
(4)1个正四边形与2个正八边形90°×1+135°×2=360°
……
结论
一般地,多边形能镶嵌成平面图案需要满足的条件:
拼接在同一个点的各个角的和恰好等于360°(周角);
相邻的多边形有公共边。
延伸
用三种或多种多边形能否进行镶嵌,若能,又需满足什么条件?
活动4
应用并设计正多边形镶嵌的平面图案(若设计有困难,就欣赏已设计好的平面图案)
活动5
小结:请学生谈谈本节课的收获和体会。
作业:(1)作业本(1);
(2)设计一幅正多边形镶嵌的平面图案。
八年级数学教学设计36
教学目标
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点
掌握长方体和正方体表面积的计算方法。
教学工具
长方体、正方体纸盒,剪刀,投影仪
教学过程
【复习导入】
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
【新课讲授】
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
课后小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
课后习题
1、填空。
(1)一个正方体棱长5厘米,它的棱长和是( ),表面积是( ),体积是( )。
(2)一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是( ),占地面积是( ),表面积是( ),体积是( )。
(3)一个长方体方钢,横截面积是12平方厘米,长2分米,体积是( )立方厘米。
(4)一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水( )升。
(5)一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重( )千克。
(6)正方体的棱长扩大3倍,棱长和扩大( )倍,表面积扩大( )倍,体积扩大( )倍。
(7)用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体( )块。
(8)一个长方体的长、宽、高分别是a米、b米、h米。如果高增加2米,体积比原来增加( )立方米。
2、判断。(正确的在括号内打“√”,错的在括号内打“×”)
(1)正方体是由6个完全相同的正方形组成的图形。( )
(2)棱长6厘米的正方体,它的表面积和体积相等。( )
(3)a?表示a×3 。( )
(4)一个长方体(不含正方体),最多有两个面面积相等。( )
(5)一个长方体(不含正方体),最少有两个面面积相等。
板书
长方体的表面积=(长×宽+长×高+宽×高) ×2
正方体的表面积=边长×边长×6
八年级数学教学设计37
教学目标
1.知识与技能:
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想;会进行单项式与多项式相乘的运算。
2.过程与方法:
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
3.情感态度与价值观:
使学生获得成就感,培养学习数学的兴趣。
教学重点难点
1.教学重点:
单项式与多项式相乘的运算法则及其运用
2.教学难点:
灵活地运用单项式与多项式相乘的运算解决数学问题。
教学过程
一、复习导入
1.如何进行单项式乘单项式的运算?
单项式的系数?相同字母的幂?只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算:(2a2b3c)(-3ab)=-6a3b4c
2.应用运算律来计算:6×(+-)
二、新课讲解
探究新知
为了扩大绿地的面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边分别加宽a米和c米,求扩大后绿地的面积?
m(a+b+c)=ma+mb+mc
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
用公式表示上面的运算过程:m(a+b+c)=ma+mb+mc
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1.计算:
(-4x2)·(3x+1)注意:多项式中“1”这项不要漏乘.
(2) ( ab2-2ab) ·ab
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
点评:
(1)多项式每一项要包括前面的符号;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致(1不要漏乘);
单项式系数为负时,改变多项式每项的符号。
巩固法则
练习1下列计算对吗?若不对,应该怎样改?
(1) 3a(a-1)=3a2;
(2) 2x2(x-y)=2x3-2x2;
(3) (-3x2)(x-y)=-3x3-3x2y;
(4) (-5a)(a2-b)=-5a3+5ab.
练习2.填空
(1)单项式与多项式相乘,就是用单项式去乘多项式的________,再把所得的积________。
(2) 4(a-b+1)= ___________________。
(3) -3x(2x-5y+6z)= _____________________。
(4) (-2a2)2(-a-2b+c)=_____________________。
练习3计算
(1) (-3x)(2x-3y) (2) 5x(2x2-3x+1) (3) am(am-a2+1)
例2.计算
x(x2-xy+y2)-y(x2+xy+y2)
练习1:计算
x(x2-1)+2x2(x+1)-3x(2x-5)
练习2:化简求值
Yn(yn+9y-12)-3(3yn+1-4yn)其中y=-3,n=2
引导学生观察思考后,让学生尝试解答,之后教师展示示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂小结
1.单项式乘以多项式的法则?
2.一种思想:单项式与多项式相乘的实质是把单项式乘以多项式转化为单项式乘法。
3.注意点:
(1)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定;
(2)不要出现漏乘现象;
(3)运算要有顺序:先乘方,再乘除,最后加减。有括号一般先去括号(小→大);
(4)结果要合并同类项。
五、布置作业
书上习题14.1第4、7题
八年级数学教学设计38
教学目标具体要求:
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:
勾股定理的应用
难点:
勾股定理的应用
教案设计
一、知识点讲解
知识点1:(已知两边求第三边)
1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?
知识点2:
利用方程求线段长
1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,
(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?
(2)DE与CE的位置关系
(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?
利用方程解决翻折问题
2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?
3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少?
5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式.
知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系
1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。
(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。
(3)在ABC中,a:b:c=1:1:,那么ABC的确切形状是_____________。
2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明∠AFE是直角吗?
变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明∠AFE是直角吗?
3.一位同学向西南走40米后,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了
二、课堂小结
谈一谈你这节课都有哪些收获?
应用勾股定理解决实际问题
三、课堂练习以上习题。
四、课后作业卷子。
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
【八年级数学教学设计】相关文章:
八年级数学教学设计06-12
数学教学设计01-21
数学教学设计09-02
数学教学设计05-26
数学教学设计-03-24
数学教学设计06-29
《有趣的数学》教学设计09-30
用数学教学设计09-06
数学《比的认识》教学设计06-16
初中数学的教学设计06-21