七年级数学教学设计

时间:2024-10-20 00:58:03 教学设计 我要投稿

七年级数学教学设计

  作为一名优秀的教育工作者,有必要进行细致的教学设计准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。那么优秀的教学设计是什么样的呢?下面是小编精心整理的七年级数学教学设计,希望对大家有所帮助。

七年级数学教学设计

七年级数学教学设计1

  教学目标

  经历探索完全平方公式的过程,会推导完全平方公式;

  能利用完全平方公式进行简单的运算。

  在探索完全平方公式的过程中,发展学生的符号感和推理能力,体会数学语言的严谨与简洁。

  培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

  重点难点

  重点

  完全平方公式的推导和运用

  难点

  完全平方公式的结构特点和灵活运用。

  教学过程

  一、复习导入

  1.说出平方差公式的内容及作用。

  2.我们知道,当相乘的两个多项式有一项相同,另一项相反时,可以用平方差公式直接得到结果,大大简化了运算过程,那么当相乘的两个多项式两项都相同时,是不是也有一个公式来简化运算过程呢?这节课我们就来探索一个新的乘法公式:完全平方公式。

  二、新课讲解

  探究新知

  计算下列各式,你能发现它们的结果有什么规律吗?

  鼓励学生发表各自的看法,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,以此调动学生参与的热情。

  综合学生的观察,得到:两数和的平方,等于它们的平方和,加上它们的积的两倍。

  2.这个结论可以推广到任意两个数的计算上去吗?

  我们可以利用多项式乘法法则来推导一下:(师生共同完成)

  3.两数差的平方等于什么呢?请同学们计算。

  学生一般会这样计算:

  及时引导学生用语言叙述这个结果:

  两数差的平方,等于它们的平方和,减去它们的积的两倍。

  以上两个公式都叫做完全平方公式,它们之间有联系吗?启发学生把“-b”整个的看成一个数,用两数和的平方公式来计算,结果怎么样?结果发现两数差的平方可以用两数和的平方公式推导出来,也就是两数差的平方公式可以归属于两数和的平方公式。但为了使用方便,通常我们还是以两个公式来呈现。

  完全平方公式:;

  用语言叙述为:两数和(或差)的平方,等于它们的.平方和,加上(或减去)它们的积的两倍。

  完全平方公式的理解

  1.比较两数和、两数差的平方公式的异同。

  学生讨论,发表各自的看法。

  2.比较完全平方公式与平方差公式的不同之处。

  学生发表看法后,教师特别指出完全平方公式计算的结果有三项,不要误以为是两项,比方;,是错误的。我们用图形的面积来加深一下对这个结果的理解:如图,显然整个正方形的面积由四部分组成。

  三、典例剖析

  例1运用完全平方公式计算:

  (3);(4);

  师生共同解答,教师板书。初学运用时要写清楚运用公式的步骤,熟记公式。

  例2运用完全平方公式计算:

  学生解答,进一步体会两个完全平方公式的异同。

  四、课堂练习

  1.下面各式的计算对不对?如果不对,应怎样改正?

  2.运用完全平方公式计算:

  (1);(2);(3);

  3.运用完全平方公式计算:

  教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

  五、小结

  师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  P50第2(1)、(2),4题

七年级数学教学设计2

  学习目标:

  了解平移的概念,会进 行点的平移,理解平移的性质,能解决简单的平移问题

  重点:

  平移的概念和作图方法。

  难点:

  平移的作图。

  一、预习导学

  预习课本P27—P29,并完成以下练习

  1、观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?

  2如何在一张半透明的纸上,画出一排形状和大小如图的雪人?

  2、在平面内,将一个图形沿某个方向___一定的距离,这样的图形运动称为平移,平移改变的是图形的_____。平移不改变图形的____和____。

  3、图形的平移是由_____和_____决定的。

  4、经过平移所得的图形与原来的图形的对应线段_______,对应角____,对应点所连的线段____。

  5、如图1,△ABC平移到△DEF,图中相等的线段有_____________,相等的角有____________,平行的`线段有______________。

  6、把一个△ABC沿东南方向平移3cm,则AB边上的中点P沿___方向平移了 __cm。

  7、如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________。

  8、如图,△DEF是由△ABC先向右平移__格,再向___平移___格而得到的。

  11、如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船。

  12、如图,平移三角形ABC,使点A运动到A`,画出平移后的三角形A`B`C`。

  二、课堂学习研讨

  (一)平移的概念

  1、一个图形________________________叫做平移变换,简称平移。

  2、下列各组图形中,可以经过平移变换由一个图形得到另一个图形的是( )

  3、如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是( )

  A △OCD B △OAB

  C △OAF D △OEF

  (二)平移的性质

  1、平移后的图形与原图形_____、______完全相同,新图形中的每一个点,都是由____________ _______移动后得到的,这两个点是对应点,连接各组对应点的线段______且________或__________,对应角_______。

  2、如图,将梯形ABCD的腰AB沿AD平移,平移长度等于AD的长,则下列说法不正确的是( )

  A AB∥DE且AB=DE B ∠DEC=∠B

  C AD∥EC且AD=EC D BC=AD+EC

  3、△ABC沿B C的方向平移到△DEF的位置,(1)若∠B=260,∠F=740,则∠1=_______,∠2=______,∠A=_______,∠D=______

  (2)若AB=4c m,AC=5cm,BC=4。5 cm,EC=3。5cm,则平移的距离等于________,DF=_______,CF=_________。

  ( 三)平移作图

  1、△ABC在网格中如图所示,请根据下列提示作图

  (1)向上平移2个单位长度。

  (2) 再向右移3个单位长度。

  2、已知三角形ABC、点D,D为A的对应点。过点D作三角形ABC平移后的 图形。

  三、随堂小测

  (一)选择题

  1、下列哪个图形是由左图平移得到的( )

  2、如图所示,△FDE经过怎样的平 移可得到△ABC。( )

  A、沿射线EC的方向移动DB长;

  B、B沿射线EC的方向移动CD长

  C、沿射线BD的方向移动BD长;

  D、D。沿射线BD的方向移动DC长

  3、下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )

  4、如图所示,△DEF经过平移可以得到△ABC,那么∠C

  的对应角和ED的对应边分别是( )

  A、∠F,AC B。∠BOD,BA; C。∠F,BA D。∠BOD,AC

  5、在平移过程中,对应线段( )

  A、互相平行且相等; B。互相垂直且相等 C。互相平行(或在同一条直线上)且相等

  (二)填空题

  1、在平移 过程中,平移后的图形与原来的图形________和_________都相同,因此对应线段和对应角都________。

  2、如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°, 那么∠E=____度,∠EDF=_______度,∠F=______度,∠DOB=_______度。

  (三)解答题

  1、如图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置。

  2、如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格。

  3、如图所示,画出平行四边形ABCD向上平移1厘米后的图形。

  4、如图,将△ABC沿水平方向平移3cm。

  5、直角△ABC中,AC=3c m,BC=4cm,AB=5cm,将△ABC沿CB方向平移3cm,则边AB所经过的平面面积为____cm2。

  6、一个长方形竹园长20米,宽12米,竹园有一条横向宽度都为 1。5米的小径(如图)。你能求出这个竹园中竹子的种植面积吗(除去小径的面积)?请说明理由。

七年级数学教学设计3

  教学目标:

  1.会用代入法解二元一次方程组。

  2.初步体会解二元一次方程组的基本思想――“消元”。

  3.通过研究解决问题的方法,培养学生合作交流意识与探究精神。

  重点:

  用代入消元法解二元一次方程组。

  难点:

  探索如何用代入法将“二元”转化为“一元”的消元过程。

  教学过程:

  复习提问:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?

  解:设这个队胜x场,根据题意得

  解得

  x=18

  则 20-x=2

  答:这个队胜18场,负2场。

  新课:

  在上述问题中,我们可以设出两个未知数,列出二元一次方程组

  设胜的场数是x,负的场数是y,

  x+y=20

  2x+y=38

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程

  2x+y=38的y换为20-x,这个方程就化为一元一次方程。

  二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

  归纳:

  上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  例1 把下列方程写成用含x的'式子表示y的形式:

  (1)2x-y=3 (2)3x+y-1=0

  例2 用代入法解方程组

  x-y=3 ①

  3x-8y=14 ②

  例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?

  用代入消元法解二元一次方程组的步骤:

  (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

  (2)把(1)中所得的方程代入另一个方程,消去一个未知数。

  (3)解所得到的一元一次方程,求得一个未知数的值。

  (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

  作业:

  教科书第98页第3题

  第4题

七年级数学教学设计4

  教学建议

  (一)教材分析

  1、知识结构

  2、重点、难点分析

  重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

  难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

  (二)教学建议

  1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

  2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

  (1)假命题可分为两类情况:

  ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.

  ②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的命题.

  (2)是否是命题:

  命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

  另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.

  (3)命题的组成

  每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

  有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.

  另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.

  教学设计示例:

  教学目标

  1.使学生对命题、真命题、假命题等概念有所理解.

  2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.

  3.会判断一些命题的真假.

  教学重点和难点

  本节的重点和难点是:找出一个命题的题设和结论.

  教学过程设计

  一、分析语句,理解命题

  1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:

  (1)我是中国人。

  (2)我家住在北京。

  (3)你吃饭了吗?

  (4)两条直线平行,内错角相等。

  (5)画一个45°的角。

  (6)平角与周角一定不相等。

  2.找出哪些是判断某一件事情的句子?

  学生答:(1),(2),(4),(6)。

  3.教师给出命题的概念,并举例。

  命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)

  如:的句子,叫做命题,分析(3),(5)为什么不是命题.

  教师分析以上命题

  (1)对顶角相等。

  (2)等角的余角相等。

  (3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。

  (4)如果a>0,b>0,那么a+b>0。

  (5)当a>0时,|a|=a。

  (6)小于直角的角一定是锐角。

  在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。

  (7)a>0,b>0,a+b=0。

  (8)2与3的和是4。

  有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。

  4.分析命题的构成,改写命题的形式。

  例两条直线平行,同位角相等.

  (l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。

  (2)改写命题的形式。

  由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”

  请同学们将下列命题写成“如果……,那么……”的形式,例:

  ①对顶角相等。

  如果两个角是对顶角,那么它们相等。

  ②两条直线平行,内错角相等。

  如果两条直线平行,那么内错角相等。

  ③等角的补角相等。

  如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)

  以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”

  提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。

  如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

  “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”

  二、分析命题,理解真、假命题

  1.让学生分析两个命题的不同之处。

  (l)若a>0,b>0,则a+b>0

  (2)若a>0,b>0,则a+b<0

  相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。

  不同之处:(1)中的结论是正确的,(2)中的结论是错误的。

  教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。

  2.给出真、假命题定义

  真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。

  假命题:如果题设成立,结论不成立,这样的.命题都是错误的命题,叫做假命题。

  注意:

  (1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。

  (2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。

  (3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题。

  (4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。

  3.运用概念,判断真假命题。

  例请判断以下命题的真假。

  (1)若ab>0,则a>0,b>0。

  (2)两条直线相交,只有一个交点。

  (3)如果n是整数,那么2n是偶数。

  (4)如果两个角不是对顶角,那么它们不相等。

  (5)直角是平角的一半。

  解:(l)(4)都是假命题,(2)(3)(5)是真命题.

  4.介绍一个不辨真伪的命题.

  “每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)

  我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定。

  5.怎样辨别一个命题的真假。

  (l)实际生活问题,实践是检验真理的唯一标准。

  (2)数学中判定一个命题是真命题,要经过证明。

  (3)要判断一个命题是假命题,只需举一个反例即可。

  三、总结

  师生共同回忆本节的学习内容。

  1.什么叫命题?真命题?假命题?

  2.命题是由哪两部分构成的?

  3.怎样将命题写成“如果……,那么……”的形式。

  4.初步会判断真假命题.

  教师提示应注意的问题:

  1.命题与真、假命题的关系。

  2.抓住命题的两部分构成,判断一些语句是否为命题。

  3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。

  4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。

  四、作业

  1.选用课本习题。

  2.以下供参选用。

  (1)指出下列语句中的命题.

  ①我爱祖国。

  ②直线没有端点。

  ③作∠AOB的平分线OE。

  ④两条直线平行,一定没有交点。

  ⑤能被5整除的数,末位一定是0。

  ⑥奇数不能被2整除。

  ⑦学习几何不难。

  (2)找出下列各句中的真命题。

  ①若a=b,则a2=b2。

  ②连结A,B两点,得到线段AB。

  ③不是正数,就不会大于零。

  ④90°的角一定是直角。

  ⑤凡是相等的角都是直角。

  (3)将下列命题写成“如果……,那么……”的形式。

  ①两条直线平行,同旁内角互补。

  ②若a2=b2,则a=b。

  ③同号两数相加,符号不变。

  ④偶数都能被2整除。

  ⑤两个单项式的和是多项式。

七年级数学教学设计5

  教学目标:

  进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。

  认识方程的解的概念。

  掌握验根的方法。

  体验用尝试法解一元一次方程的思想方法。

  重点:

  一元一次方程的概念

  难点:

  尝试检验法

  教学过程:

  1、温故

  方程是含有______的______.

  归纳:判断方程的两要素:

  ①有未知数②是等式

  (通过填空让学生简单回顾方程概念,并总结方程两要素)

  2、知新

  根据题意列方程:

  (1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?

  设这件衣服的原价为x元,8折后售价为______

  可列出方程、

  (2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?

  设x年后树高为5m,

  可列出方程_______

  (3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?

  设它又继续下潜了x米,

  x米增加大气压个。

  可列出方程、

  (教师引导学生列出方程)

  80%x=72

  观察比较方程:

  (学生根据方程特点填空)

  等式的两边的代数式都是_________;每个方程都只含有___个未知数;且未知数的指数是_____

  (教师总结)这样的方程叫做一元一次方程.

  (教师提问:需满足几个特点,学生回答后总结一元一次方程概念)

  1、两边都是整式

  2、只含有一个未知数

  3、未知数的指数是一次、

  (教师引出课题——5.1一元一次方程)

  3、(接下来一起将前面所学新知与旧知融会贯通)

  1、下列各式中,哪些是方程?哪些是一元一次方程?

  (1)5x=0(2)1+3x

  (3)y2=4+y(4)x+y=5

  (5)(6)3m+2=1–m

  (这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。接着找出其中的一元一次方程,着重说说为什么(3)、(4)、(5)不是呢?引发学生套用一元一次方程三个特点说明,教师要补充的是(3)是二次方程,(4)是二元方程,(5)这种情况左边不是整式,进而进一步再强调一次什么是“元”什么是“次”。(3)错在未知数不能出现2次,(4)错在不能出现两个未知数)

  4、概念提升(为了能够游刃有的掌握一元一次方程的概念,我们再对它做一次提升,大家请看下面两个问题。

  1、方程3xm-2+5=3是一元一次方程,则代数式m=_____。

  2、方程(a+6)x2+3x-8=7是关于x的

  一元一次方程,则a=_____。

  (通过概念的强调对这题的理解有很大帮助,题1检验学生对一元一次方程中“一次”的理解,题2检验学生对“一元”的.理解)

  5、一元一次方程的根

  思考:

  当y为多少时一元一次方程6=y+4成立呢?(本题学生容易猜想得到,教师引出一元一次方程的解的概念)

  一元一次方程的解:

  使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。

  (引导学生掌握验根的方法,并指导学生完成验根过程书写步骤)

  判断下列t的值能不能使方程2t+1=7-t左右两边的值相等、

  (1)t=-2(2)t=2

  (先让学生口头检验,再叫学生说说得出结论的过程,进而引导学生一步步书写(1)步骤,学生齐答教师需要先板书步骤,完成后投影出示步骤,接下来让学生上黑板书写(2)的验根过程)

  解:(1)把x=-2代入方程:

  左边=2×(-2)+1=-4+1=-3

  右边=7-(-2)=7+2=9

  ∵左边≠右边

  ∴x=-2不是原方程的解、

  6、尝试-检验法(光会验根还不够,我们还应学习怎样找到一元一次方程的根,大家请看这个问题)

  一射箭运动员两次射击的成绩都是整数,平均成绩是6.5环,其中第二次射箭的成绩为9环,问第一次射箭的成绩是多少环?

  设第一次的射箭成绩为x环,可列出方程。

  (请一学生回答得出的方程)

  思考:同学们,请猜想一下,结合实际,x能取哪些数呢?

  (学生可能会说出0、到10所有整数都可能若说不出再引导)(每次射箭最多是10环,

  而且只能取整数环)(要检验11次有点多,能不能再把范围缩小一点呢?引导学生对比已知的一次成绩与平均成绩的高低,从而得出未知成绩应该比平均成绩小,学生得出可以代入检验7次):由已知得,x为自然数且只能取0,1,2,3,4,5,6、把这些值分别代入方程左边得。(让学生检验得到根,接下来课件梳理验根的结果)

  把x为0,1,2,3,4,5,6这些值分别代入方程左边得:

  x

  0

  1

  2

  3

  4

  5

  64.5

  5

  5.5

  6

  6.5

  7

  7.5

  当x=4时,=6.5,所以x=4就是一元一次方程

  =6.5的解、

  (刚刚我们得出方程根的方法叫)----尝试检验的方法

  (投影出示其概念并强调其对于找出方程根的重要意义)

  7、收获总结

  一元一次方程概念(强调三个特点)

  一元一次方程的根(有验根以及尝试检验法找根)

  8、时间多余做书本练习

  板书设计:

  5.1一元一次方程

  1解:(1)把x=-2代入方程:

  一元一次方程的概念2

  3

  掌握验根步骤

  一元一次方程的解

  尝试检验法寻根

七年级数学教学设计6

  教学目标

  理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

  在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。

  培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

  重点难点

  重点

  完全平方公式的比较和运用

  难点

  完全平方公式的结构特点和灵活运用。

  教学过程

  一、复习导入

  1. 说出完全平方公式的内容及作用。

  2. 计算 ,除了直接用两数差的完全平方公式外,还有别的方法吗?

  学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“ ”看成加数,按照两数和的完全平方公式计算,结果是一样的。

  教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的.平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。

  我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。

  二、新课讲解

  温故知新

  与 , 与 相等吗?为什么?

  学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:

  1.对原式进行运算,利用运算的结果来判断;

  2.不对原式进行运算,只做适当变形后利用整体的方法来判断。

  思考:与 , 与 相等吗?为什么?

  利用整体的方法判断,把 看成一个数,则 是它的相反数,相反数的奇次方是相反的,所以它们不相等。

  总结归纳得到: ;

  三、典例剖析

  例1运用完全平方公式计算:

  (1) ; (2)

  鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。

  例2计算:

  (1) ; (2) .

  例3 计算:

  (1) ; (2)

  训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。

  四、课堂练习

  1.运用完全平方公式计算:

  (1) ; (2) ;

  (3) ; (4)

  2.计算:

  (1) ;(2) .

  3. 计算:

  (1) ; (2)

  学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。

  五、小结

  师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  P50第2(3)、(4),3题

七年级数学教学设计7

  教学目标

  知识与技能:

  理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.

  过程与方法:

  1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.

  2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。

  情感、态度与价值观:

  结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。

  教学重点

  确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.

  教学难点

  确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

  教学过程

  一、情景引入:

  约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本取名为《对消与还原》。对消,顾名思义,就是将方程中各项成对消除的意思.相当于现代解方程中的“合并同类项”,那“还原”是什么意思呢?

  二、自主学习:

  1. 解方程:

  2. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  3x+20=4x-25

  观察上列一元一次方程,与上题的类型有什么区别?

  3.新知学习 请运用等式的性质解下列方程:

  (1) 4x-15 = 9; (2) 2x = 5x -21

  你有什么发现?

  三、 精讲点拨

  问题2 你能说说由方程到方程的变形过程中有什么变化吗?

  移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

  移项的依据及注意事项:移项实际上是利用等式的'性质1.注意:移项一定要变号。

  例1 解下列方程:

  解:移项,得3x+2x=32-7

  合并同类项 ,得5x=25

  系数化为1,得x=5

  移项时需要移哪些项?为什么?

  针对训练:解下列方程:

  (1) 5x-7=2x-10; (2) -0.3x+3=9+1.2x.

  四、 合作探究

  列方程解决问题

  例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?21

  思考:如何设未知数?

  你能找到等量关系吗?

  五、 当堂巩固

  1. 对方程 7x = 6 + 4x 进行移项,得___________,合并同类项,得_________,系数化为1,得________.

  2. 小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁. 求小新现在的年龄.

  3. 在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?

  六、 课堂小结

  1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。

  2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。

  3.列方程解实际问题的基本思路。

  七、作业布置

  1.必做题:教科书第91页习题3.2第3(3),(4),11题。

  2.选做题:

  (1)周末,甲、乙两个商场搞促销活动,甲商场的活动为所有商品全部按标价的8折出售,乙商场的活动为标价200元以下的商品按标价出售,超出200元的部分打7折.现有某件商品在两个商场的标价都为400元,应当在哪个商场购买更实惠?如果标价为600元呢?为800元呢?你能否给顾客一些建议,以便获得更大的实惠呢?

  八、板书设计

七年级数学教学设计8

  一、教学目标

  1、让学生学到的知识技能是社会对青少年所需求的;

  2、要让学生知道这是自己终身学习和发展所需要的;

  3、贴近生活实际让学生爱数学,自主的学教学;

  4、让学生掌握数学基本知识和技能

  二、教材分析:

  初一数学七年极(下)要目:第一章一元一次不等式组第二章二元一次方程组第三章平面上直线的位置关系和度量关系第四章多项式第五章轴对称图形第六章数据的分析与比较课题学习测量不规则图形课题学习包装盒的分类、设计和制作该教材每章开始时,都设置了导图与导人语,激发了学生的学习兴趣与求知欲望。

  在教学中,适当设置如“回忆、思考、探索、概括、做一做、读一读、想一想、试一试”等以及“信息收集,调查研究”等活动栏目,让我们给学生适当的思考空间,从而使学生能更好地自主学习。在教材各块内容间,又穿插安排了涉及数学史料、数学家、实际生活、数学趣题、知识背景、外语教学、信息技术、数学算法等等的阅读材料,用好它,不但扩大了学生知识面,而且增强了学生对数学文化价值的体验与数学的应用意识。

  该教材练习题更是体现了满足不同层次学生发展的需要。整个教材体现了如下特点:

  1、现代性——更新知识载体,渗透现代数学思想方法,引入信息技术。

  2、实践性——联系社会实际,贴近生活实际。3、探究性——创造条件,为学生提供自主活动、自主探索的机会,获取知识技能。

  4、发展性——面向全体学生,满足不同学生发展需要。5、趣味性——文字通俗,形式活泼,图文并茂,趣味直观。

  三、教学措施:

  第七章重视一元一次不等式组的解法与应用注意从学生的生活经验和已有知识出发,创设生动有趣的教学情境关注学生在学习活动中的情感和态度表现给学生足够的活动空间,认真实施分层教学第八章灵活运用代入法或加减法解简单的二元一次方程组会列出二元一次方程组解简单应用题,并能分析结果理解解方程组“消元”的思想,领会“转化”的思想妥善处理学生“主体”与教师“主导”的关系突出解二元一次方程组通法的教学加强学生之间的合作学习注意教材弹性第九章进一步认识点、线、面、角了解同一平面上的两条直线的三种关系初步理解平移的概念平行与垂直的性质与判定注重从学生实际出发,注重概念引入多联系实际尽量利用教具或多媒体设备保持教材的逻辑体系注重联系教材的文化背景第十章了解多项式的的有关概念能进行简单的多项式的加、减、乘运算注重联系实际,为将来学函数奠定基础让课堂内容生动、趣味化,从学生熟悉的背景引出概念第十一章体会对称之美利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用认识特殊三角形的性质及角平分线、垂直平分线的性质设计开放性很强的练习,关注学生情感、价值观的培养关注“局部”与“整体”的教学思维的训练第十二章紧扣数据,抓住概念本质,紧密联系实际对平均数、极差、方差的概念,注意把握教学的层次让学生自主思考、相互交流,以形成结论四、课程的.教学过程要求我们:

  i、课堂教学从:“复习-引入——讲授——巩固——作业”,转变为:“情境——问题——探究——反思——提高”,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。

  ii、数学课堂由单纯传授知识的殿堂转变为学生主动从事数学活动,构建自己有效的数学理解的场所。

  iii、数学教师由单纯的知识传递者转变为学生学习数学的组织者、引导者和合作者。

  iv、充分利用现代教育技术增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等。

  v、给学生提供成果展示机会,培养学生的交流能力及学习数学的自信心。

  四、注意事项

  1、要由“单纯传授知识”转变为“既传授知识,又培养学生数学思维方式和能力”;

  2、要由“教师主导,学生被动接受知识”转变到“以学生为主体,教师组织引导”;

  3、本册内容较传统,但教学方式不可以传统,不要以教师的讲解代替学生的活动;

  4、结合具体的教学内容和学生的实际活动创设问题的情境;

  5、应当让学生思考自己作出判断,教师先不要作出相关的提示或暗示;

  6、应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”的数学活动中来并适当搭造“合作、交流”的平台;

  7、重点应落在掌握有关基础知识和技能;

  8、要深入钻研,创造性的设计教学过程。

  五、课时安排(教学进度)

  第二周2、1二元一次方程组1课时2、2二元一次方程组的解法3课时2、3二元一次方程组的应用1课时

  第三周2、3二元一次方程组的应用3课时第二章复习2课时

  第四周3、1线段、直线、射线2课时3、2角3课时

  第五周3、3平面直线的位置3课时3、4图形的平移2课时

  第六周3、5平行线的性质与判定5课时

  第七周3、6垂线的性质与判定5课时

  第八周第三章复习2课时4、1单项式、多项式3课时

  第九周4、1合并同类项2课时4、2多项式的加法2课时4、3同底数幂的乘法1课时

  第十周第十一周第十二周4、3多项式的乘法5课时

  第十三周第十四周4、4乘法公式5课时

  第十五周第四章复习2课时5、1轴反射与轴对称图形3课时

  第十六周5、2线段的垂直。

七年级数学教学设计9

  面向21 世纪的数学教学的理念是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的数学”,“数学教育应努力激发学生的学习情感,将数学与学生的生活、学习联系起来,学习有活力的、活生生的数学”。 数学教材,最显著的是不再追求学科本身的完备性和知识的覆盖面,而且符合新课标中的“不仅考虑了数学自身的特点,更遵循了学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲自经历,将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面都得到进步和发展”,这样即把教材的中心价值转移到了学生怎样使用教材上,而且赋予教材中的知识内容以更多的价值观,以利于学生形成积极主动的学习态度,关注学生的学习兴趣和经验。教材中,每一章节的课题,无不体现了以学生的发展为本的基本观念。七年级数学上册是一个全新的体系,与以往的数学课本完全不同。学生的感觉是插图精美、问题有趣、惊喜连连、引人入胜,但老师的感觉却是千头万绪,难分重点难点,更不知知识讲解的“度”在哪里?作为一个老教师如何根据教材的特点,把枯燥的数学变得有趣、生动、易于理解,让学生活学、活用,从而培养学生的创新精神与实践能力呢?通过反复思考,我就从课堂教学入手,联系生活实际讲数学;把生活经验数学化,把数学问题生活化。一个学期教下来,感慨颇多,对这本教材开始有一点了解、有一点欣赏,同时希望利用这套教材将自己的数学教学工作完善起来,积累更多的经验。 对教学的理解是:教学过程是师生交流、共同发展的主动过程,强调师生交流,构建互动的师生关系、教学关系,是教学改革的首要任务。

  初一学生首次接触初一数学这门课的时候,教师应该给学生创造一个良好的'数学环境为以后的数学教学开个好头,打好基础。

  1、第四章“图形认识初步”给教师提供了一个良好的数学环境的素材,教材中每一小节的课题都是那么亲切、有趣,插图、想一想、做一做、读一读、试一试无不吸引着学生参与其中,感受着探索、创造、求知、合作的美。要教好这一章,教学方法和形式都与以往的教学不同,要做好充分的准备。这准备是多方面的,首先熟悉教材,把握教材编写的意图:吸引学生、激发学生学习数学的兴趣。在教学中给学生动手操作的时间和空间,给他们展示自己探索、发现的过程和平台,充分的肯定和鼓励他们,使他们树立学好数学的信心。其次,要准备好教具、课件、学具,这一章的学习需要很多实物、模型、图片,还有许多需要老师带领学生课堂实践的操作,如叠一叠、做一做、试一试等,这些需要老师提前布置预习,有的要求学生回家准备,有的需要老师准备好在课堂上提供给学生使用,这些工作十分繁琐、费时,教师必须落实,否则会影响上课的效果。教师布置任务时要求清晰、到位,再给予相应的评价和鼓励,不但学生准备学具时积极,形成良好预习习惯,而且,课堂学生参与度和积极性都很高,课堂效率会有很大的提高。在较为抽象的内容如:从不同方向看这节教学中,学生准备学具就显得尤为重要了。在学生动手操作的基础上,利用了多媒体课件,显示用一个平面截正方体、圆柱体、圆锥体时的截面情况,画面清晰美丽又富于趣味性,给学生带来很大的乐趣,同时达到了把抽象问题具体化的功效。学生在学习“从不同的方向看”时,从立体图形到平面图形的转化感到困难,我感到光是讲解难以达到好效果,所以,借助实物帮助学生突破思维和学习上的障碍,收效很好。在生活中的图形一课中,我收集了很多美丽图片在电脑中,上课时投影给学生,让他们找出熟悉的几何图形,这些都极大的调动了学生学习的兴趣和积极性,收到很好的效果。 教学过程中,要处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性。引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程。教师应尊重学生的人格,关注个体差异,满足不同的需要,创设能引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。如有理数的混合运算一直是学生学习的难点,也是学生最不愿意参与的课程,在教授这一部分时设计了一个卡片游戏,使学生在游戏中编混合运算的题,同时计算。学生的热情和积极性空前高涨,在分小组竞赛时,大家分工协作、积极配合、努力取胜,使许多我认为难以编出的题,不但很快编出,而且迅速准确、多解,令我叹为观止,感慨万分。

  2、足球比赛、一张纸对折20 次、24 点游戏、用火柴棒搭正方形等,这些事例都是同学们很感兴趣的,所以他们特别想知道结果,从而自己主动地去看书、学习,从而努力去发现、探索,获得知识。这是新课标数学教学带给我的一个启示:乐学,顾名思义,就是让学生乐意学习,即让学生在快乐和谐的气氛中积极、主动地去获取知识。只要学生愿意和乐意做的,就没有难得、不会的,教师唯一要做的就是让学生在课堂上动起来。教学过程是交往,教师与学生都是教学过程的主体。在教学过程中,强调是师生间、学生间的动态信息交流,这种信息包括知识、情感、态度、需要、兴趣、价值观等方面以及生活经验、行为规范等。通过这种广泛的信息交流,实现师生互动、相互沟通、相互影响、相互补充。

  3、在探究销售 中的盈亏这一问题时,充分体现师生互动、相互沟通、相互影响、相互补充,教师提出问题,师生共同解决。传统的教学方式,是教师将知识系统地讲清楚、讲明白,学生能听清楚、听懂,然后记忆、运用到解题、论证,考试中,忽略了学生的体验和感受,对学生来说是单纯的接受式学习,在这种学习中,学习内容是以定论的形式直接呈现出来的,而现在提倡的是发现学习,在发现学习中,学习的内容是以问题的形式间接呈现出来的,学生是知识的发现者。这是从七年级数学教学带给我的又一个启示 。 转变学生的学习方式,要以培养创新精神和实践能力为主要目的,换句话说,要构建旨在培养创新精神和实践能力的学习方式和教学方式,要注重培养学生的科学思维品质,鼓励学生对书本的质疑和对教师的超越,赞赏学生富有个性化的理解和表达,要积极引导学生从事实验活动和实践行动,培养学生勤于动手,勇于实践的意识和习惯。

  4、在学科活动中我们针对教材中内容,利用简单的几何图形(两个圆、两个三角形、两条平行线)为构件,构思出一副独特且有意义的图形,并配以贴切、幽默的解说词。通过课堂上的分组讨论和集体创造,学生在参与的过程中积极主动、兴趣高涨,课堂的授课效果也很理想,有的学生甚至设计了两、三个图案,所设计出的图形也很有意义,充分体现了他们的想象力和创造力。

  教师在鼓励学生探索有关数学问题的过程中,要善于发现学生的亮点,对他们实施激励性评价,使他们自觉克服学习中的各种困难,用顽强的意志、坚韧的毅力去解决一个又一个问题,从而体验到探索成功带来的欢乐。在数学教学中,当学生取得点滴进步时,教师一脸真诚的微笑、投以信任的目光、赠给热烈的祝贺等,会给予他们精神上的激励。当学生经过努力暂时没有取得成功时,如果教师投以期待的目光、赠给温馨的话语,会给予他们精神上的鼓励。 以上是我在探索中一些实例。我的想法和做法是:“生活经验(解决)数学问题(获得)数学知识(解决)实际问题”旨在使数学教学更贴近学生的生活,使学习变得有趣、生动、易懂,并会把数学知识运用于实践,使数学变得更有活力。

七年级数学教学设计10

  6.1.1平方根

  第一课时

  【教学目标】

  知识与技能:

  通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;

  过程与方法:

  通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。情感态度与价值观:

  通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

  教学重点:算术平方根的概念和求法。

  教学难点:算术平方根的求法。

  教具准备:三块大小相等的正方形纸片;学生计算器。

  教学方法:自主探究、启发引导、小组合作

  【教学过程】

  一、情境引入:

  问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为25dm的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?

  二、探索归纳:

  1.探索:

  学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm。接下来教师可以再深入地引导此问题:

  如果正方形的面积分别是1、9、16、36、

  学生会求出边长分别是1、3、4、6、24,那么正方形的边长分别是多少呢? 252,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它5

  们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

  上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

  2.归纳:

  ⑴算术平方根的概念:

  一般地,如果一个正数x的平方等于a,即x=a那么这个正数x叫做a的算术平方根。

  ⑵算术平方根的表示方法:

  a的算术平方根记为a,读作“根号a”或“二次很号a”,a叫做被开方数。

  三、应用:

  例1、求下列各数的算术平方根:

  ⑴100 ⑵2497 ⑶1 ⑷0.0001 ⑸0 649

  2解:⑴因为10100,所以100的算术平方根是10,即10; ⑵因为()7

  8249497497,所以的算术平方根是,即; 64648648

  ⑶因为1

  7164216747164,(),所以1的算术平方根是,即; 99393999316

  ⑷因为0.010.0001,所以0.0001的算术平方根是0.01,即0.00010.01;

  ⑸因为00,所以0的算术平方根是0,即00。

  注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;

  ②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;

  ③0的算术平方根是0。

  由此例题教师可以引导学生思考如下问题:

  你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?

  归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。即:只有非负数有算术平方根,如果x

  注:22a有意义,那么a0,x0。 a0且0这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、求下列各式的值:

  (1)4 (2)492 (3)(11) (4)62 81

  分析:此题本质还是求几个非负数的算术平方根。

  解:(1)42 (2)497 (3)(11)2211 (4)626 819

  例3、求下列各数的算术平方根:

  ⑴3 ⑵4 ⑶(10) ⑷

  22321 610解:(1)因为39,所以3293;

  ⑵因为4648,所以438; 32

  222⑶因为(10)10010,所以(10)10; ⑷因为1111,所以。 103106106103

  根据学生的学习能力和理解能力可进行如下总结:

  1、由323,626,可得a2a(a0)

  222、由(11)11,(10)10,可得a2a(a0)

  教师需强调a0时对两种情况都成立。

  四、随堂练习:

  1、算术平方根等于本身的数有_____。

  2、求下列各式的值:

  ,92,52,(7) 25

  3、求下列各数的算术平方根:

  190.0025,121,42,()2,1 216

  4、已知a110,求a2b的值。

  五、课堂小结

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的.?

  3、怎样求一个正数的算术平方根?

  六、布置作业

  课本第44页习题第1、2题

  教学反思

  初中数学教学翻转课堂应用

  摘要:

  随着对教育质量的追求,提高课堂教学效率成为广大教师着手解决的重要课题,初中数学教师在这一方面进行了仔细的研究,翻转课堂的有效运用可以激发学生的学习兴趣,提高学生的自主学习能力,帮助教师塑造高效课堂,本文围绕“翻转课堂在初中数学教学中的应用”这一主题展开探讨。

  关键词:

  初中数学;翻转课堂;应用分析

  翻转课堂,称为颠倒课堂,是由美国兴起的一种教学模式,基本形式是重新调整课堂内外的学习时间,把学习主动权和决定权交给学生,以学生家看教师准备好的微视频为基础,课上教师针对学生在看视频过程中出现的问题集中讲解,在这一种教学模式下,学生能带着问题进入课堂,更专注地听教师讲解,大大提高课堂教学效率,教师不用浪费时间在大量的基本知识点的讲解上,而把这些时间用来帮助学生完善知识体系,让学生获得更真实的学习体验。

七年级数学教学设计11

  一、教学目标:

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

  3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程:

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答:-3 - 3×3×(-3)=333324

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出33(3)的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层? 2

  (2)对折二次有几层? 224

  (3)对折三次有几层? 2228

  (4)对折四次有几层? 222216

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记:22 23 24

  师:请同学们总结对折n次有几层?可以简记为什么?

  2×2×2×2×2

  n个2

  生:可简记为:2n

  aaa?师:猜想:a生:an

  n个a

  师:怎样读呢?生:读作a的n次方

  老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a

  的因数),n叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:

  练习一:把下列各式写成乘方运算的形式:

  6×6×6= (-3) (-3) (-3) (-3)=

  2.1×2.1×2.1×2.1×2.1= 1

  21

  21

  21

  21

  21

  2=

  注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义

  543431126

  3.学生分小组讨论,总结乘方运算的性质

  师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)

  教师再对各种情况进行分析总结。

  师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的.任何次幂都是正

  数,0的任何正整数次幂都为0。

  4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?

  (-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9

  乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解

  例1:计算(教师板演一题后请学生板演)

  (1) 26 (5) 62

  (2) 73

  44(3) (3) (6) 3

  33(4)(4) (7) 4

  比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?

  小结:一定要先找出底数和指数,确定符号后再去计算。

  例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334

  比一比:(2)与(3)一样吗?(4)与(5)一样吗?

  总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。

  5、课外探究

  一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。

  6、归纳总结,形成体系:

  1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;

  特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来

  2

  3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。

  7、作业布置:习题2.6第1、2题;

七年级数学教学设计12

  教学目标

  1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程

  (师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论。

  (数0既不是正数又不是负数,是正数和负数的分

  界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是

  零上7℃,最低温度是零下5℃时,就应该表示为+7℃

  和—5℃,这里+7℃和—5℃就分别称为正数和负数。

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入

  负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。

  分析问题

  解决问题问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的'增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

  类似的例子很多,如:

  水位上升—3m,实际表示什么意思呢?

  收人增加—10%,实际表示什么意思呢?等等。

  可视教学中的实际情况进行补充。

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少—2kg,但现在不必向学生提出。

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)

  本课作业1,必做题:教科书第7页习题1。1第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。

七年级数学教学设计13

  教学目标

  1.经历探索平方差公式的过程,会推导平方差公式;

  2.能利用平方差公式进行简单的运算。

  在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。

  激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。

  重点难点

  重点

  平方差公式的推导和运用

  难点

  平方差公式的结构特点和灵活运用。

  教学过程

  一、复习导入

  1.回顾多项式乘多项式的法则。

  2.创设情境:你能快速地口算下列式子的值吗?

  (1);(2).

  师生共同想办法,想到能否把数转化成较整的数?

  变形成:,

  再试试把它当成多项式乘法来算算,有什么发现?

  继续用你发现的方法算算,,,成功了吗?

  我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。

  二、新课讲解

  探究新知

  1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?

  讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。

  2.把式子里具体的数换成字母表示的数,结论还成立吗?

  3.从上面的计算中你有什么发现呢?

  引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。

  4.你能通过演算推导出平方差公式吗?

  最终得到平方差公式:

  平方差公式的理解应用

  下列多项式乘法中,能用平方差公式计算的.是_______________(填写序号)

  (1);(2);(3);

  (4);(5);(6).

  学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。

  三、典例剖析

  例1运用平方差公式计算:

  师生共同解答,教师板书。初学运用时要写清楚步骤。

  例2运用平方差公式计算:

  学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。

  例3.计算:

  学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。

  四、课堂练习

  1.下面各式的计算对不对?如果不对,应怎样改正?

  (1);

  2.运用平方差公式计算:

  (1);(2);

  (3);(4).

  3.计算:

  (1);(2);

  教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

  五、小结

  师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  P50第1、6题

七年级数学教学设计14

  ●教学目标

  知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的概念和求一个数的绝对值

  教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,

  一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两

  又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

  二、建立数学模型

  绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  注意:①与原点的关系②是个距离的概念

  练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。

  (通过应用绝对值解决实际问题,体会绝对值的'意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6, , 0, -10, +10

  解:|-1.6|=1.6 ||= |0|=0

  |-10|=10 |+10|=10

  2、练习2:填表

  相反数 绝对值 2.05 1000 0 - -1000 -2.05

  (以表格的形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)

  3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  4、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  5、例2、求绝对值等于4的数。

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  ∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  ∴绝对值等于4的数是+4和-4

  注意:说明符号“∵”读作“因为”,“∴”读作“所以”

  6、练习本:做书上16页课内练习3、4两题。

  四、归纳小结

  本节课我们学习了什么知识?

  你觉得本节课有什么收获?

  由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  让学生去寻找一些生活中只考虑绝对值的实际例子。

  课本16页的作业题。

  本人在近几届乐清市中、小、幼教师教学论文联评中均有获奖,特别是论文《谈数学学困生的惰性心态及教学策略》在全国数学教研第十一届年会论文(初中组)比赛中获三等奖;而且在近几年的说课比赛和优质课评比中表现出色;是校青年骨干教师,名教师培养对象。

  乐清市虹桥镇第一中学 陈杨明

  -4 -3 -2 -1 0 1 2 3 4

  4个单位长度 4个单位长度

  M

七年级数学教学设计15

  一、学生起点分析:

  通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.

  二、教学任务分析:

  本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.

  三、教学目标:

  知识与技能:

  1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.

  2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.

  过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.

  情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.

  四、教学过程设计:

  环节一 创设情景,引入新课

  内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.

  考虑几个问题:

  1、 手里的'橡皮泥在手压前和手压后有何变化?

  2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

  3、在这个变化过程中,是否有不变的量?是什么没变?

  目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.

  学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.

  环节二:运用情景,解决问题

  内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

  目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.

  实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.

  锻压前 锻压后

  底面半径 5cm 10cm

  高 36cm xcm

  体积 π×25×36 π×100?x

  由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.

  解:设锻压后的圆柱的高为xcm,由题意得

  π×25×36=π×100?x.

  解之得 x=9.

  此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

  (1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;

  (2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.

  过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.

  分析: 锻压前 锻压后

  底面半径 5cm 长acm, 宽bcm

  高 36cm xcm

  体积 π×25×36 abx

  环节三:操作实践,发现规律

  内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

  目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.

  实际效果:

  长(cm) 宽(cm) 面积(cm2)

  长方形1 15 5 75

  长方形2 13.6 6.4 86.4

  长方形3 12.8 7.3 93.44

  长方形4 11.6 8.4 97.44

  长方形5 11 9 99

  长方形6 10 10 100

  由学生的实际操作得到的近似值已反映出来一个很好的规律.

  学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.

  过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.

  环节四:练一练,体验数学模型

  内容:课本例题

  目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.

  例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.

  (1)此时长方形的长和宽各为多少米?

  (2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

  (3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

  实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.

  环节五:课堂小结

  1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.

  2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.

  3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.

  环节六:布置作业

【七年级数学教学设计】相关文章:

七年级数学教学设计04-14

数学七年级上册教学设计06-17

数学教学教学设计04-15

《数学》教学设计06-27

数学教学设计08-12

数学教学设计05-09

数学教学设计06-12

七年级下册数学教学设计05-02

七年级上册数学教学设计03-18