面积教学设计14篇
在教学工作者开展教学活动前,总不可避免地需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的面积教学设计,希望能够帮助到大家。
面积教学设计 篇1
教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。
学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。
教学目标
1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。
2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。
教学重点
在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的`面积。
教学难点
培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。
学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。
教学过程
一、复习准备:
1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?
谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:
长方形的面积=长×宽。
平行四边形的面积=底×高。
2、出示红领巾。
(1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?
(2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。
二、合作探究:
1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?
2、探究三角形面积计算公式。
教师:我们学习过哪些求面积的方法?(数方格和转化的方法)
教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。
①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)
②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)
三、探讨交流。
1、组织全班学生进行交流,说明推导公式的过程。
2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。
3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。
4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。
5、引导转化小组学生总结三角形面积的计算公式,同步板书:
两个相同的三角形=一个平行四边形。
平行四边形的面积公式=底×高。
三角形的面积公式=底×高÷2。
用字母表示公式:s=ah÷2。
6、教学例题2。
四、巩固练习。
(1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。
(2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?
面积教学设计 篇2
教学内容:
小学数学第十二册教材P33~P34
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积 (板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的'演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:S=C×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、 分组闯关练习
1、多媒体出示题目。
第一关(填空)
沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。
第二关
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。
第三关(用你喜欢的方法完成下面各题)
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、 质疑(同学们还有什么疑问吗?)
五、反馈小结:
教学反思
1、 自主探究,体验学习乐趣
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
面积教学设计 篇3
教学内容:北师大版三年级下册教材45—46页“摆一摆”
教学目标:
1. 知识目标:
在理解面积含义的基础上,通过1cm的小正方形测量三个不同长方形的面积,推出长方形面积的计算方法。再用同样的方法推出正方形面积的计算方法。
2. 能力目标:
掌握长方形、正方形的面积公式,能解决一些简单的实际问题。
3. 情感目标:
在探究过程中,培养学生观察、质疑和动手操作的能力,让学生体会到解决问题的方法和策略的多样性。
重、难点:
重点:长方形、正方形面积的计算方法的推导过程。
难点:运用长方形、正方形面积的计算方法解决实际问题。
教学准备:课件,长方形、正方形纸片若干张。
教学思路:
情景引入—师生互动探新—小组讨论—交流汇报—总结评价。
教学过程:
一、 情景设疑、引入新课
师:同学们,非常高兴今天又能和大家一起探讨有趣的数学问题。这节课,老师为同学们请来了两位客人。是谁呢?是两只可爱的小老虎,一只叫淘淘,另一只叫乐乐,他俩是非常要好的朋友,可有一天他们俩为了一件小事争了起来,我们一起去看看吧。淘淘说:“我的家可漂亮了,面积很大”,乐乐说“你瞎说,我的家面积比你的大”他俩谁也说服不了谁?同学们,你们愿意帮助他们解决这个问题吗?(课件出示情境图)
生互相讨论汇报。
(设计意图:通过讲故事导入新课,创设问题情境,激发学生强烈的学习和探究欲望,培养学生的创新意识)
师:同学们的这些方法都很有创意,那有没有一种简便的方法来很快得出答案呢?今天这节课我们就来探索一种计算面积的新方法来帮助淘淘和乐乐解决这个问题好吗?
揭示课题:长方形的面积
二、操作实验、探究新知
(一)探究长方形的面积计算
1、估一估:课件出示P45 “估一估”。
引导学生看书45页,让学生说一说用哪个面积单位表示这几个图形比较合适。
请学生估计一下它们的大小。
(设计意图:让学生估一估这些长方形的面积,激发了他们的学习兴趣,培养了他们的估算能力)
师:同学们估计了很多答案,怎样知道这三个长方形的准确面积是多少cm2呢?你们每个学习小组也有这样的一个长方形。根据前面学习的知识,你能知道他们的面积吗?想一想,你们有什么办法知道?学习小组可以一起讨论。
2、摆一摆:
(1)按组分任务:(一、二组摆图①、三四组摆图②、五六组摆图③),并把摆放小正方形数据填入相应的记录表中。
(2)明确操作要求(课件出示)
(3)小组交流汇报,展示小组的探究成果。
生:我们用1平方厘米的小正方形摆,摆满后再数一数,正好用了10个1平方厘米,所以它的面积是10平放厘米。
生:我们也是用1平方厘米的小正方形摆的,先横着摆,可以摆5个,再竖着摆可以摆2个,所以一共是5×2个,也就是10平方厘米。
师:两种方法哪一种更简便呢?老师也在电脑上摆一摆,同学们仔细观察然后再比一比。
4)课件演示:摆一摆的过程,让学生加深理解公式的含义。
比较方法,交流反馈:通过比较,大家都觉得用计算的方法要简便些。
(设计意图:引导学生对测量的方法进行对比,感受其优劣,体验到计算比直接测量更方便,为进一步探究面积计算方法创造条件)
5)课件演示:师生共同填写书中表格,启发学生发现规律。
师:从表格中,你发现长方形的面积与它的长和宽有什么关系吗?板书:长方形的面积=长×宽
(设计意图:学生小组合作,动手操作,填写记录表充分调动学生参与长方形面积公式推导的积极性,为学生自主探索创造了广阔的时空。同时通过学生交流,师生交流,让学生分析、比较、概括实验过程,自主地去感知、观察、发现长方形面积与长、宽的关系,让学生体验到“做“数学的乐趣)
3、量一量:
(1)用尺量出长方形的长和宽,再用长乘宽算出面积。
(2)分组量出45页三个长方形的长和宽,算出面积,反馈交流,验证结果。
4、解决问题:
师:刚才我们一起探究得出长方形的面积计算方法,现在请同学们用你学到的新知识去帮助淘淘和乐乐解决他们的问题吧。
(二)探究正方形面积的计算
1、课件出示46页试一试。
师:想一想,正方形的面积该怎样计算呢?(板书课题:正方形的面积)先用1cm的正方形摆一摆,再算一算下面图形的面积。
2、每位同学独立试一试,小组交流结果。
3、课件演示,验证结果
师:这是一个正方形,由于正方形是特殊的长方形,所以它的面积也适用“长×宽”的计算方法。请同学们想一想:正方形的`面积计算公式应该怎样说比较合适呢?
4、强调并板书:正方形的面积=边长×边长
(设计意图:鼓励学生在先前的知识经验的基础上进行推想,发展学生的思维能力)
三、灵活运用,巩固内化
(一)森林公园----闯关
师:同学们,淘淘和乐乐很感谢你们帮助他们解决了问题,邀请我们到森林公园去玩闯关游戏,闯关成功不仅有丰厚的奖品,还能获得森林公园的免费门票,想挑战吗?
(二)课件出示:
1、第一关
计算下面花圃的占地面积。(边长15米)
2、第二关
我的床长20分米,宽14分米,要铺上与床同样大的席子,这块席子的面积是多少平方分米?
3、第三关
这张桌子的面积是90平方分米,宽是6分米,长是多少?
生独立完成,集体订正。
(设计意图:利用新颖的闯关游戏,设计有层次、有新意、有挑战性的练习,让学生在练习中运用知识、内化知识,进而提高学生综合运用数学知识解决问题的能力)
四、总结评价,拓展升华
1、引导学生回顾本课学习内容,谈谈学习本课的收获。老师认为同学们这节课学的很棒!能评价一下吗?(启发学生从学习态度、学习方法等方面自评、互评)同学们的收获真不少,只要勤动手,勤思考,一定会获取更多的数学知识,同学们也会变得越来越聪明。
2、挑战自己我快乐(拓展题)
用12个边长为1厘米的正方形纸板摆长方形,你能摆出几种?
这个问题留给同学们课后去实验、去思考、去解答。
(设计意图:着眼于学生的可持续发展,拓宽学生知识面,从课内延伸到课外,提高学生思维水平,)
面积教学设计 篇4
【教学内容】
义务教育课程标准实验教科书第十一册P69~71例1、例2。
【教学目标】
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:
理解圆的面积计算公式的推导。
【教学准备】:
相应课件;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的`面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业。
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
面积教学设计 篇5
教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:三角形面积计算公式的推导过程
教学难点:在转化中发现内在联系及推导说理。
教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。
设计思路:
本节课有以下几个特点:
1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。
2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。
教学过程
一、创境引新
1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)
这个公式是怎样推导出来的呢?
电脑动态演示割拼的转化过程。
形成板书:
转化 找关系 推导
学生看大屏幕,
口答:s=ah
学生口述平行四边形面积公式的推导过程。
2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?
三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)
生可能会说:求出它的面积。
二、自主探索
合作交流1、谈话启思。
我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?
2、操作探索。
(1)四人小组合作进行操作、探索。
(2)小组汇报、交流、展示。
学生可能会拼出以下图形:
(3)课件演示拼出的各种图形。
(4)设疑:
这些图形中哪些图形的面积你会计算?
通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?
你能不能很快的把两个完全相同的三角形拼成平行四边形。
老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?
电脑演示转化的动态过程。
(5)找关系。
师:拼成的平行四边形与原三角形有什么关系?
课件出示:
a.拼得的平行四边形的底与原三角形的底有什么关系?
b.拼得的平行四边形的高与原三角形的高有什么关系?
c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?
(6)汇报
在学生回答的基础上师用电脑演示。
(7)尝试推导说理。
师:根据你们的发现,你能推导出三角形的面积计算公式吗?
在学生的汇报中形成板书:
三角形的面积=平行四边形的面积÷2
底 × 高
= 底× 高÷2
师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?
完善板书:s=ah÷2
学生口答:长方形、平行四边形。
生:两个完全一样的三角形能拼成平行四边形。
学生操作,感到不是很容易。
学生观看转化过程。
尝试旋转、平移的方法。
小组讨论交流。
小组派代表发言。
学生讨论后回答,并说说自己是怎样推导的?
学生发言。
学生齐说:s=ah÷2
3、探究用一个三角形进行割补转化推导。
师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?
师:下面我们来观察电脑上是怎样操作的?(点击课件)
师:同学们若有兴趣,课后可以继续探索不同的割补方法。
小组合作探究,
汇报交流。
学生观看运用割补法将一个三角形转化成平行四边形过程。
三、实践应用
拓展提高
1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?
你能估计一下它的底有多长吗?(课件出示红领巾)
一条红领巾的面积是多少平方厘米?
2、看图计算面积。
3、你认识这些道路交通标志吗?谁来说说。
(课件出示)
师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)
你来帮他们算算需要多少铁皮?
4、判断。
(1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(2)、等底等高的两个三角形,面积一定相等。()
(3)、两个三角形一定可以拼成一个平行四边形。()
(4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()
5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。
学生估计底的长度。
学生独立完成,一人板演。做完后集体订正。
学生口述列式。
通过图3知道要用对应的底和高计算面积。
学生说说自己认识交通标志。
学生独立完成,然后交流。可能出现下面两种方法。
方法一:s=ah÷2
=7.8×9÷2
=35.1
35.1×2=70.2(平方分米)
方法二:s=ah
=7.8×9
=70.2(平方分米)
学生判断,并说明理由。
四、评价体验
通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)
学生之间互相评价。
教学反思:
1、利用远程教育资源,创设教学情景。
利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的.面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。
2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。
割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。
3、利用远程教育资源,提高学生应用新知识的能力。
练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。
总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。
面积教学设计 篇6
教学内容:
人教版小学数学五年级上册第五单元《组合图形面积》。
教学目标:
1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。
教学重难点及关键:
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
教学过程:
一、复习回顾,揭示课题
1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?
2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)
二、自主探索组合图形面积
1、出示计算客厅面积问题:
小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?
2、请学生们观察这个图形,然后自己先想一想该怎么计算?
3、小组合作交流,讨论解决组合图形面积计算问题。
学生可能出现“分割法”和“添补法”
“分割法”即将上述图形分割成几个基本图形。
4、讨论“分割法”
1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论“添补法”
1)为什么要补上一块?
2)补上一块后计算的方法是怎样的?
(让学生都理解这一算法)
6、先归纳出两大类的方法“合并求和”、“去空求差”。
小结:谁来总结一下,组合图形的面积应该怎么计算?
计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。
看来同学们学得都很不错,现在老师还有几道题想考考大家。
三、实际应用
1、先来一题热身题,出示书本试一试。
2、一展身手,挑战开始。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
可以采取学生独立解决与合作交流的形式
如果你不会做,可以和你的同桌讨论交流一下。
3、挑战本领
一张硬纸板剪下4个边长是4厘米的`小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
可以采取学生独立解决与合作交流的形式
4、求图形阴影部分的面积。
5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)
可以先四人小组讨论,然后在进行计算。
四、课堂总结
在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。
面积教学设计 篇7
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的.合作精神和创新意识。
教学重点:推导出圆的面积公式及其应用。
教学难点:圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
面积教学设计 篇8
教学目标:
1、知识目标:让学生在操作、观察活动中,自主探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。能结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
2、能力目标:培养学生自主探索、合作交流的能力;丰富学生对现实空间的认识,发展初步的空间观念。
3、情感目标:调动学生学习的积极性,培养学生积极自主探索、互助学习的精神,在评价中获取更多情感,同时学会欣赏他人。
教学重点:
理解长方体表面积的含义;理解并掌握长方体表面积的计算方法。难点:根据给出的长方体的长、宽、高,迅速确定每个面的长和宽,这也是正确计算长方体的表面积的关键。
教学过程:
一、复习旧知,情境导入。
1、复习长方体、正方体的特征。
2、同学们,我们手中都有长方体或正方体的盒子,但都不相同,如果把它们都包上一层红色的彩纸?它们的颜色就相同了,那么,需要多大的纸呢?从学生生活实际引入,还数学的原始本来面目,既能达到以问促学的目的,又激发了学生的求知欲。
二、实践探索,发现新知。
1、结合教材P18页内容,初步感悟表面积含义。
(1)根据左边的长方体纸盒,按要求完成所提问题。
(2)问题(课件出示)
(3)如果做上面的纸盒,需要多少纸板呢?
师引导问:需要多少纸板就是求长方体的什么?
(4)什么是长方体的表面积呢?
学生发表自己的想法。师小结。
2、小组合作学习,探索长方体表面积计算方法。
(1)课件演示展开图,加深理解。
(2)学生自主探索、合作交流长方体表面积的计算方法。
(3)汇报。
3、分析比较计算方法。通过观察分析,让学生想象,展开的实物图,在看一看中充分感知,建立表象,展开思维,发现并归纳出表面积的`含义,从而明确概念。
当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,我让学生通过实物图和平面展开图的对比,自主探索。
三、举一反三,知识迁移。课件出示"试一试"
1、理解长方体表面积的含义。
2、探索正方体表面积的计算方法学生自主探索正方体表面积的计算方法。
3、汇报交流。计算正方体的表面积是在长方体表面积的基础上进行教学的,因此我把迁移类推的机会留给了学生,让学生自己发现,类推出正方体表面积的计算方法。不仅培养了学生的逻辑思维能力,而且培养了学生的再创造能力。
四、巧设练习,巩固新知。
(1)一个无盖玻璃鱼缸的形状是正方体,棱长为5分米,制作这个鱼缸至少需要多大面积的玻璃?
(2)四人一小组,用两个形状相同的正方体拼成一个长方体,算一算,拼成的长方体的表面积是多少?我设计的练习题从易到难,让学生自己运用新知识解决实际问题。使学生在研究、讨论、探索的过程中发展智能。体会生活中的长方体表面积是变化的,只有活学活用才能真正解决生活中的实际问题,从而体会到生活中处处有数学。
五、课堂小结。
1、今天我们学习了什么新知识?
2、你觉得自己这节课表现怎样?你们认为呢?
面积教学设计 篇9
教材简析
本堂课的内容是在学生学习了长方体和正方体的认识之后呈现的,是学生所接触到的第一节立体图形相关数值的计算,同时也是教学其它立体图形数值计算的基础,其地位非常重要。
二、教学目标
1、知识目标:让学生在操作、观察活动中,自主探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。能结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
2、能力目标:培养学生自主探索、合作交流的能力;丰富学生对现实空间的认识,发展初步的空间观念。培养学生的动手操作能力和共同研究问题的习惯。
3、情感目标:调动学生学习的积极性,培养学生积极自主探索、互助学习的精神,在评价中获取更多情感,同时学会欣赏他人;通过亲身参与探索实践活动,去获得积极的成功的情感体验;体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
三、教学重、难点
重点:理解长方体表面积的含义;理解并掌握长方体表面积的计算方法。难点:根据给出的长方体的长、宽、高,迅速确定每个面的长和宽,这也是正确计算长方体的表面积的关键。
四、学情分析
目前五年级学生的思维能力主要是直观形象到逻辑思维的过渡阶段,学习的动机主要是直接动机为主,认知水平不是一次性完成的,是逻辑滚动的,并且在学这部分内容之前,学生已经直观认识了长方体、正方体,并已经学会长方形、正方形等平面图形的计算。只有充分了解自己学生的基础和实际情况,才能有效的进行合理的教学。
五、教学方法
1、我采用“看看、说说、练练、议议”轻松教学法直奔教科书练习六的第1和第2题,使学生初步理解长方体表面积的概念。我于课前制作练习六的第1题的三个长方体图形的课件。先通过动画演示,激发学生的学习兴趣,直观地看到这三个图形的长、宽、高,然后用动画效果使前面变红并不停地闪动,让学生依次说出每个面的长与宽是多少,并计算其面积,接着用同样办法让学生练习计算出其佘5个面的面积和另外两个长方体各个面的面积,最后让学生议论长方体表面积的概念和计算方法。
2、用动画效果,直观演示长方体和正方体展开前与展开后的样子,进一步理解长方体和正方体表面积的概念。我用三维立体动画制作长方体和正方体展开效果的课件,使学生分清长方体和正方体上下、左右、前后六个面的关系,弄懂前面和后面、上面和下面、左面和右面面积相等,掌握6个面的总面积就是长方体和正方体表面积。
3、通过具体的实物演示,使学生加深理解长方体和正方体表面积概念。让学生拿出课前准备好的'长方体和正方体纸盒,跟着老师在外面标出上、下、前、后、左、右,再沿着棱剪开后展开,看看展开后的形状,再按照展开前标出相应的上、下、前、后、左、右。
4、在教学例1时,我用三维立体动画电脑课件,动画演示,直观形象。让学生说出上、下、前、后、左、右每个面的长和宽是多少,弄清它们与原来的长方体的长、宽、高的关系,从而找出求长方体表面积的规律。
六、教学用具:
长方体电脑课件
七、教学过程:
(一)、实物引入、提示课题、明确目标(创设问题情境)
1、出示课题,长方体的表面积
电脑课件展示长方体各个面之间的存在的关系。动态展示长方体上下两个面是完全相同的动态展示长方体左右两个面是完全相同的动态展示长方体前后两个面是完全相同的
二、自主探索、形成表象、建立概念(提出数学问题)
(1)感受长方体表面积的意义。
师:同学们说的非常好。刚才我们想对长方体的那些部分进行包装?
生:长方体的6个面。
师:那么,什么是长方体的表面积呢?师:老师手中有一个展开的长方体,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
师:说得对!请你把你刚才涂色的长方体,展开,看看展开后的形状,然后在展开后的图形中,分别用“上面”、“下面”、“前面”、“后面”、“左面”、“右面”标明6个面。
(2)、认识长方体表面积的含义。
师:从学生手中选一个长方体展开图,贴在黑板上。
问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体的表面积?
生1:长方体的表面积,就是指长方体物体表面的面积。
生2:长方体的表面积,就是指长方体上下、前后、左右六个面的面积总和。
生3:简单地说就是把长方体六个面的总面积,叫做它的表面积。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?
(3)探求表面积的计算方法
各小组先把手中长方体包装好。独立思考如何求它的表面积?然后小组交流。一人执笔三人汇报看哪个组的方法最多。各小组学生交流汇报结果。可能有以下几种:
生(1):分别求出长方体上、下、左、右、前、后的面积,再把它们的积加起来,就是它们的表面积。S=S上+S下+S左+S右+S前+S后
生(2) :求上、下两个面的面积;求出前、后两个面的面积;求出左、右两个面的面积,然后把三次乘得的结果加起来,就是长方体的表面积。S=2S上+2S左+2S前
生(3):求出上面,求出前面,求出左面,然后用它们相加的和,再乘以2,就得出六个面的总面积。因为长方体六个面中,分别有三组相对面的面积相等。S=2(S上+S左+S前)
生(4):侧面积加2个底面积.S=C底xh+2S上
师:你们计算的很准确!长方体学具是一个长、宽、高不等的长方体,你们能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
三、迁移类推、自己发现、总结方法
师:关于长方体表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。
师:出示长方体牙膏盒,能计算出它的表面积吗?
生:齐声回答“能!”过了一会说:不能。
师:为什么?
生;因为不知道每个面的长和宽各是多少?
师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?
生:需要量出3个数据,分别是长方体的长、宽、高。
师:请看老师手中的长方体与刚才的长方体有什么不同?你能用最简便的方法求出它的表面积吗?
生:我发现这个长方体的宽和高是相等的,所以是一个特殊的长方体。生:列式(略)。
师:同学们不仅能仔细观察而且能根据实际求出长方体的表面积.真不错.现在老师还想请你帮个忙.我想给(出示正方形盒子或积木)涂上油漆,你能帮我算出它的面积吗?
生:能.但它的棱长为多少?
师:棱长为0.8米.生:列式.评价.总结正方体表面积公式.
四、应用与反思
1.知识运用。
(1例
1、做一个微波炉的包装箱,(如右图),至少要用多少平方米的硬纸板?独立计算,说说你是怎么计算的?
2、一个教室的长是8米,宽是6米,高是4米。要粉刷教室的屋顶和四面的墙壁。除去门窗和黑板面积22.4平方米,粉刷的面积是多少平方米?
五、归纳知识、总结学法、促进提高
小组说说:这节课学到了什么?学会了哪些知识?谁的方法最好?你喜欢哪种方法?你会解决哪些生活中实际问题?板书设计:长方体的表面积
长方体的表面积:用字母表示: =长×宽×2+长×高×2 +宽×高×2 S=a×b×2+b×c×2+a×c×2 =(长×宽+长×高+宽×高)×2 =( a×b+b×c+a×c)×2
面积教学设计 篇10
教学目标:
(一)知识目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点:
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备:
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的.侧面积。
(1)学生独立解答
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)
面积教学设计 篇11
一、教学目标:
1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。
2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
二、教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。
三、学校及学生状况分析:
我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。
四、教学设计:
(一)由谈话导入新课。
1、我们已经学过长方形、正方形、平行四边形面积的计算公式。
还记得它们的面积公式吗?(一人回答)
还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?
小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。
2。 谁知道三角形面积的计算公式?
老师调查一下:
①知道三角形面积计算公式的举手。(可能多)
②不知道三角形面积计算公式的举手。(可能不多)
③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)
今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程
[板书课题:三角形面积]
(二)探究活动。
根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]
下面我们将按小组来探究三角形面积的计算公式。
1、介绍学具袋中的学具。
2、出示探究目标和建议
小组合作探究活动,三角形面积的计算公式是怎样推导出来的?
建议:边动手、边想、边说。
(1) 你把三角形转化成了你以前学过的什么图形?
(2)原来的三角形和转化后的图形有什么关系?
(3) 三角形面积的计算公式是什么? 为什么?
3、同学们自选学具,想一想就可以开始了……
(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)
了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)
4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)
① 直接用两个完全一样的三角形拼成平行四边形推导……
② 用一个三角形折成长方形推导……
③ 将一个三角形用割补法推导……
(若学生用任意三角形,注意指导沿“中位线”剪开)
……
5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2
6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)
总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。
(三)巩固练习(机动)
我们来试着运用这个公式:
1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。
2 基本题
3 基本题
(由2、3题解决“等底等高三角形面积相等”)
4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?
(四)总结
说说你这节课的感受?
(重点总结心得体会或经验教训。)
五、教学反思:
新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。
如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。
这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的'过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。
六、案例点评
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。
通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。
面积教学设计 篇12
教学内容: 圆的面积 教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:
一、谈话引入
明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)
导入课题:圆的面积
二、引导探究
1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?
(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?
(2)猜测圆的面积与半径有什么关系?
正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……
2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的'平面图形的面积推导过程。
A、长方形、正方形,直接用面积单位去量,找规律得到的;
B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。
(2)统一认识,寻求转化的方法
A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;
B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。
(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形
同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。
长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)
长方形的面积 = 长 × 宽
圆的面积 = 圆周长一半( r)×半径(r)
S = π r2 B、拼成近似的三角形
三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2
B、圆的面积与什么有关?回到课始的猜测。
三、总结
本节课你有什么收获?
四、实践
1、已知r=4cm,求S。
2、已知d=8cm,求S。
板书设计:
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
《 圆的面积》教学反思
济渎路 翟彩艳
圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不同
本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地
参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。
面积教学设计 篇13
教学内容:
人教版义务教育课程标准实验教科书五年级上册第84—86页。
教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、
教学目标:
1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的探索过程。
教具准备:
课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程
一、复习旧知,导入新课。
1、我们学过求哪些图形的面积,计算公式是什么?
2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。
3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?
师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。
二、动手操作,探求新知。
1、 猜一猜。找关系
师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?
生:和它的底和高有关。
2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?
2、 想一想。找关系
师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?
3、 拼一拼,摆一摆,比一比。找关系
师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。
学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。
汇报。可能摆出正方形,长方形,平行四边形,
思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?
归纳:两个完全相同的三角形,可以拼出一个平行四边形。
师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?
引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?
4、 画一画,算一算。找关系,得结论。
师:请同学们画出平行四边形的一条高,你发现了什么?
生:平行四边形的.高也是三角形的高,底也是三角形的底。
师:那么,我们刚刚得出的结论还可以怎样写?
三角形的面积=底×高÷2
用字母表示三角形的面积。
5、 应用公式,解决问题。
现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。
教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?
学生独立计算,集体订正。
三、练习巩固。
1、 独立完成85页做一做。
2、 完成86页练习的1、题。
3、 完成86页练习的3题。
4、判断下列说法是否正确。
(1)三角形面积是平行四边形面积的一半。( )
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
(4)等底等高的两个三角形,面积一定相等。( )
(5)两个三角形一定可以拼成一个平行四边形。( )
5、求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。
四、拓展提高:
1、这节课,你有什么收获?还有那些不懂的地方?
2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?
五、板书设计:
三角形的面积
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
面积教学设计 篇14
教学目标:
1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。
2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。
3、进一步培养学生的动手操作能力,发展学生的空间观念。
教学重点:
圆柱体的表面积公式的推导。
教学难点:
圆柱体侧面积公式的推导
教学过程:
活动一:
教师出示喝水用的杯子,提问是什么形状?
进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?
学生思考并提出数学问题。
活动二:
1、教学圆柱体表面积的意义
教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?
学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。
教师板书课题。
请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的'总面积?
概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积
板书:侧面积 + 一个底面积×2 = 表面积
2、引导学生探究圆柱体侧面展开图
⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?
⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?
⑶小组合作进行探究。
⑷小组汇报交流研究成果。
3、探究圆柱体侧面积计算方法
教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?
在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长
×高。
教师:你能求出做这个圆柱形杯子需要多少铁皮吗?
学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。
活动三:
课件出示闯关题,让学生进行抢答。
活动四:
1、请同学谈收获
2、教师小结:
今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。
活动五:
布置作业:教科书五十页自主练习的第1题。
【面积教学设计】相关文章:
面积教学设计04-07
《面积》教学设计03-25
面积教学设计04-25
面积的教学设计04-18
面积和面积单位教学设计06-21
面积和面积单位教学设计04-11
圆的面积教学设计04-03
梯形面积教学设计03-28
圆的面积教学设计04-05
什么是面积的教学设计07-04