数学面积的教学设计

时间:2024-04-25 18:34:57 毅霖 教学设计 我要投稿

数学面积的教学设计(通用15篇)

  作为一名专为他人授业解惑的人民教师,总归要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。如何把教学设计做到重点突出呢?以下是小编整理的数学面积的教学设计,仅供参考,欢迎大家阅读。

数学面积的教学设计(通用15篇)

  数学面积的教学设计 1

  【教材解读】

  自读:例5教学面积公式的应用。求出学生最熟悉的数学书封面的面积大小,并用数学书封面的面积去测量课桌的面积。

  做一做,用学生身上的尺子来测量长度,进而求出教室的面积。(反思:知道了这样做,要再深入问:为什么要这样做?)

  细读:例5的编排意图与前面“做一做”的编排意图基本相同。在计算数学书封面面积后,又安排利用计算结果估计桌面面积的活动,一方面体现了上面计算的价值;另一方面提示,可用自己熟悉的物品面积作为“非标准”的面积单位,估计其他面积,从而发展学生的估测意识与能力。

  “做一做”利用学生自己的“步长”作为单位,测量教室的长和宽,并估测教室面积。目的是使学生进一步了解自己,用自己随身携带的“标尺”,随时随地地认识更多的事物,积累更多的实践经验,发展学生的估测意识与估测能力。

  【教学目标】

  使学生进一步理解面积公式的含义;

  使学生进一步掌握面积公式的计算。

  【教学流程】

  一、面积公式的复习

  1.出示:练习十五的`第1题。

  学生独立计算。

  如果满铺是这样的如果半铺又是怎样的你会选择铺吗?

  2.完成练习第2题

  出示:两个信息,学生提出问题?

  二、教学例5

  1.出示题目

  读题计算

  468平方厘米到底有多大呢?

  我们熟悉的数学书封面是500平方厘米,估计一下我们的课桌面积大约有多少?

  师:你是怎么估测的呢?

  小结:我们可以用尺子量出长和宽计算出桌面面积的大小;但当没有尺子时,可以用已知的数学书封面面积来测量桌面面积。

  2.做一做

  如果没有尺子,如何测量我们教室的面积呢?

  生预:用课本面积;

  生预:用课桌面积;

  生预:用身上的尺子。(脚步的“尺子”)

  小结:用自己随身携带的“标尺”,随时随地地认识更多的事物。

  3.目测实物面积和测量计算面积

  黑板的面积;长方形的面积;地面方格的面积。

  猜测依据测量。

  三、巩固练习

  1.练习第7题,面积和周长(练习本上)

  2.第9题,知道周长,如何求面积?

  3.第8题,选择。

  1)全部的面积;

  2)正方形的面积;

  3)剩下的面积。

  四、拓展题

  练习第10题:面积减去后,面积相等,周长变了。

  数学面积的教学设计 2

  一、创设情境,学习新知。

  1、师:让大家通过网络收集我国国土面积的一些数据,在这些数据中,有的数据后面有“万”,有的“亿”,为什么要这样表示呢?今天这节课我们一起来研究这个问题。

  板书课题:国土面积大数的改写

  2、出示中国地图。(并多媒体演示中国地图)

  3、提问:我国的陆地面积约是多少平方千米吗?在学生回答的基础上,出示:9600000平方千米。

  4、师:你还知道我国哪些省市自治区的土地面积?请说一说。多媒体出示四个数据:

  (1)黑龙江省土地面积约450000平方千米。

  (2)江苏省土地面积约是100000平方千米。

  (3)新疆维吾尔自治区土地面积1660000平方千米。

  (4)西藏自治区土地面积约1220000平方千米。

  请同学们在地图上找一找,看一看,比一比。

  学生活动:学生读一读、写一写、想一想并说出数据的特点。

  二、结合实际背景,体会改写单位的必要性。

  1、师:大家在读写这些数的时候,有些什么感受?

  2、再比较分析一下课前我们收集的资料上的数据的特点,如果为了记录方便,这些数据可以怎么进行改写。

  三、探究改写方法。

  1、师:你知道这些数据的计数单位是什么吗?它们是以“一”为单位,一般以“一”为单位是不写计数单位的,怎么把这些单位是“一”的数进行改写呢?

  2、分小组讨论,探究改写方法。

  3、观察这些数据的基本特点,从中发现改写的基本方法9600000=960万450000=45万1660000=166万100000=10万1220000=122万10000000000=100亿300000000=3亿

  学生活动:生先读出来,再改写。师:为什么同样的数据要用不同的方法表示?

  (学生独立思考,由学生说一说是怎样想的。)

  4、归纳大数改写的基本方法

  教师活动:引导学生想;万位在右起第几位?整万的数位后面有几个0?亿位在右起第几位?整亿的`数位后面有几个0?学生讨论后,由学生自己概括改写方法

  (多媒体演示结论)

  结论:把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就可以了。

  把整亿的数改写成用“万”作单位的数,只要把后面的八个0去掉,加上一个亿字就可以了。

  四、比较大小。

  1、让学生思考一下,万以内的数的大小比较是怎么比较的,并在小组内交流。

  2、然后让学生用自己的方法和语言表达出来,并集体交流。

  五、试一试。

  1、读出下面各数,并按从小到大的顺序排列。在排列大小之前,先让学生说说排列的方法。

  2、将下面各数改写成以“万”为单位的数。让学生说说改写的方法,然后独立完成。

  3、将下面各数改写成以“亿”为单位的数。让学生说说改写的方法,然后独立完成。

  六、练一练。

  1、开发大西部。

  练习本题时,可以先请学生说一说我国西部各省市自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”作单位的数。有条件的学校,还可以让学生收集一些西部地区的其他数据信息,以供学生间互相进行改写。

  2、海洋资源。

  练习时,可以让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。3、把下图中的点按数的大小从小到大连接起来。对于不同的数据比较,学生可以先统一写法,再比较;也可以直接进行比较,对于学生的不同方法,只要合理,教师都应给予肯定。

  七、课堂小结

  本节课你有什么收获?

  回家给父母说一说,并利用网络、报刊、杂志收集生活中的大数,练习改写。

  八、布置作业

  1、教材第9页的1、2题

  2、思维训练:伦敦20xx年人口约7188000人,改写成以“万”为单位的数该是多少?

  九、板书设计

  国土面积大数的改写

  9600000=960万450000=45万1660000=166万100000=10万

  1220000=122万

  10000000000=100亿300000000=3亿

  数学面积的教学设计 3

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

  【教学重点】

  掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】

  将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】

  圆柱体纸盒、多媒体课件。

  【学具准备】

  圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的'侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

  5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积=S侧=C×h=2πrhS表=2πrh+2πr2

  底面积×2=2πr2

  ”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  数学面积的教学设计 4

  【教学内容】

  探索活动(二)《三角形的面积》教材第25页——26页

  【教学目标】

  知识目标:

  ①使学生经历、理解三角形面积公式的推导过程。

  ②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:

  ①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力。

  ②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  德育目标:

  ①利用教材上的德育资料对学生进行爱国主义教育。

  ②通过练习中的德育因素对学生进行交通安全教育。

  【教学重点】

  理解三角形面积计算公式,正确计算三角形的面积理

  【教学难点】

  理解三角形面积公式的推导过程。

  【课前准备】

  三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

  教师准备多媒体课件一份、演示教具一套

  【教学进程】

  一、复习引入

  1、出示课件

  师:比一比,下面两个图形哪个面积大?

  生:观察比较说说你是怎么比较的

  师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

  2、回顾平形四边形面积公式的推导

  师:谁能告诉老师平形四边形面积公式推导过程

  生答后,师课件演示

  师:在这个过程,我们运用了一个什么数学思想。

  生:转化

  师板书:转化

  师:现在,我们已经掌握了几种图形的面积公式了呢?

  生答后,师简要小结

  3、设疑,引入新课

  小明有一张彩纸(课件出示),他想知道这张纸面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

  师板书:三角形的面积

  二、探究新知

  1、知识猜想

  师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?

  生讨论、作答(可能和底、高有关)

  2、动手实践

  一组学生拿出直角三角形学具

  二组拿出锐角三角形学具

  三组拿出钝角三角形学具

  四组拿出任意三角形学具

  剪一剪、拼一拼,你能发现什么?

  师巡回检查、指导

  3、实践汇报

  各组汇报实践结果

  一组:我们是拿两个完全一样的`三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

  二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

  三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

  四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

  各组就实践汇报展开讨论。

  4、演示总结

  师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?

  出示课件(演示1两个完全一样的三角形拼成平行四边形)

  师引导生观察

  (1)、拼成的平行四边形和原三角形面积有什么关系?

  生:平行四边形面积是三角形面积的2倍。

  (2)、平行四边形的底和高与三角形的哪些部分有关?

  生:平行四边形的高等于三角形的高;

  平行四边形的底等于三角形的底

  师小结并板书

  平等四边形的面积=底×高

  三角形的面积=底×高÷2

  出示课件(演示2一个三角形剪拼成平行四边形)

  师:观察平行四边形面积与原三角形面积有何关系?

  生:相等

  师:平行四边形的底和高与三角形底、高有什么关系?

  生:平行四边形的底等于三角形的底

  平行四边形的高等于三角形的高的一半

  师小结并板书

  平行四边形面积=底×高

  三角形面积=底×高÷2

  三角形的面积=底×高÷2

  字母表示:S=ah÷2

  5、师生一起回顾三角形面积公式的推导过程

  6、基本练习

  师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

  生:能

  师:好那大家帮他算一算

  生解答,师巡回检查

  强调:

  1、注意运用公式

  2、注意面积单位

  三、巩固检测

  1、出示课件

  师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

  生答、师订正

  师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

  生独立完成

  师统一订正

  2、出示课件

  师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

  生板演师讲解订正

  四、回顾总结

  师:学完这节课,你都有些什么收获呢?

  生讨论、作答

  师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

  附:【板书设计】

  三角形的面积

  平行四边形面积=底×高

  转化

  三角形面积=底×高÷2

  S=a×h÷2

  数学面积的教学设计 5

  设计说明

  1、在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2、在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的`计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3、在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备多媒体课件

  学生准备纸质圆柱形物体剪刀长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1、说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2、想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3、汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4、交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

  数学面积的教学设计 6

  教学目标:

  (一)知识目标

  1、理解圆柱的侧面积和表面积的含义。

  2、掌握圆柱侧面积和表面积的计算方法。

  3、会正确计算圆柱的侧面积和表面积。

  (二)能力目标

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点:

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备:

  1、教师、学生每人用硬纸做一个圆柱体模型。

  2、投影片。

  教学过程:

  课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?

  生:我想对老师们说,我们一定会好好表现的,不会让你们失望。

  生:我们的课堂将比赛场更精彩……

  师:我坚信你们一定不会让老师失望的。

  一、引入新课:

  师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

  生:圆柱是由平面和曲面围成的立体图形。

  生:我还知道圆柱各部分的名称……

  生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  课件演示这一过程

  师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

  师:你还想知道什么呢?

  生:还想知道怎么求它的表面积......

  师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知

  师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

  指名学生摸其表面积,并追问:怎样求它的表面积?

  生:六个面的面积和就是它的表面积

  师:怎样求圆柱的表面积呢?(学生分组讨论)

  学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

  1、圆柱的侧面积

  师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

  小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的.高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

  师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

  课件展示其变化过程。

  师生小结:(教师板书)侧面积=底面周长×高

  (评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)

  师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)

  投影呈现例一:一个圆柱,底面直径是0.4米,高是1.8米,求它的侧面积。

  (1)学生独立解答

  (2)投影呈现学生的解答,并让其讲清自己的解题思路。

  师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

  生:底面周长和高

  师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

  2、圆柱的表面积

  师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

  教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

  指名学生说解题思路,师:这说明要计算圆柱的表面积需要抓出哪两个量?

  生:底面积和侧面积

  师生小结:圆柱的表面积=底面积×2﹢侧面积

  3、反馈练习

  师:想一想,应该先求什么?再求什么?请大家动手试一试。

  4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

  三、全课小结:这节课你有什么收获?

  你有没有想提醒同学们注意的地方?

  生:要注意单位,还要注意所要求得圆柱有几个底面……

  最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)

  数学面积的教学设计 7

  设计说明

  在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

  1、动手实践,多维探究。

  数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

  2、分层运用新知,逐步理解内化。

  新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

  课前准备

  教师准备PPT课件学情检测卡课堂活动卡平行四边形卡片剪刀。

  学生准备练习卡片平行四边形卡片剪刀。

  教学过程

  创设情境,导入新课

  1、常用的面积单位有哪些?

  2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6m,宽是4m,怎样计算它的面积呢?

  根据“长方形的面积=长×宽”,得出长方形花坛的面积是24m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。

  (板书课题:平行四边形的面积)

  设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的'推导做好铺垫。

  操作实践,探究新知

  一、数方格法。

  1、复习旧知。

  师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

  (出示方格纸)

  师:这是什么图形?(长方形)如果一个方格代表1m2,那么这个长方形的面积是多少?(24m2)

  师:这是什么图形?(平行四边形)如果一个方格代表1m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

  师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

  2、填写并观察表格。

  设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。

  3、小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

  二、割补法。

  1、讨论:你们准备怎样将平行四边形转化成长方形呢?

  预设生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

  2、组织学生操作,教师巡视指导。

  3、教师示范平行四边形转化成长方形的过程。

  (1)先沿着平行四边形的高剪下左边的直角三角形。

  (2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

  4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

  (1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

  (2)这个长方形的长与原来的平行四边形的底有什么关系?

  (3)这个长方形的宽与原来的平行四边形的高有什么关系?

  (4)思考后填空。

  ①原来的平行四边形的底与长方形的()相等。

  ②原来的平行四边形的()与长方形的()相等。

  ③这两个图形的()相等。

  数学面积的教学设计 8

  教学内容

  教材第89页:长方体和正方体的表面积

  教学目标

  1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

  2、使学生会运用表面积的意义,解决生活中的一些简单实际问题;能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

  3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

  教学重难点

  重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

  难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

  教学准备

  教师:多媒体课件,长方体纸盒。

  学生:长方体纸盒

  教学设计

  一、复习铺垫

  同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

  生答。(教师强调面的知识)

  二、创设情境、引入问题

  老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

  生:长方体纸盒的表面积。

  师板书课题:长方体和正方体的表面积

  师:看了课题同学们想问什么?

  师生共议研究课题:

  (1)什么叫长方体和正方体的表面积?

  (2)怎样求长方体和正方体的表面积?

  三、合作探究、学习新知

  1、探索长方体表面积的计算方法。

  什么叫长方体的表面积呢?请看大屏幕。

  多媒体出示长方体展开图。

  师:同学们看完后有什么想说的?

  生:围成长方体的是6个长方形。

  生:长方体的表面积就是展开后6个面的总面积。

  师归纳后板书:长方体或正方体6个面的`总面积,叫做它的表面积。

  师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

  多媒体出示长方体粘合图

  师:同学们看完后,又想到了什么呢?

  生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

  生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

  〔着重引导学生体会:求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

  多媒体出示长方体图形

  师:现在同学们能求出它的表面积吗?

  生:不能。

  师:为什么?

  生:没有数据。

  师课件出示数据,引导学生把数据放到长方体相应的位置。

  2、探究每个面的长和宽与长方体的长、宽、高有什么关系?

  师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

  多媒体展示,引导学生讨论:

  上、下每个面的长和宽分别是长方体的()和();

  前、后每个面的长和宽分别是长方体的()和();左、右每个面的长和宽分别是长方体的()和()。

  小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

  上、下每个面的长和宽分别是长方体的(长)和(宽);

  前、后每个面的长和宽分别是长方体的(长)和(高);左、右每个面的长和宽分别是长方体的(高)和(宽)。

  3、尝试计算

  问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

  学生尝试计算,出示活动要求:

  (1)小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

  (2)把自己的计算方法和小组内的同学交流。

  教师参与学生的活动。

  反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

  学生板演后说明想法:

  生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

  生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

  教师注意引导学生语言叙述的完整性,准确性。

  师多媒体展示学生的汇报结论。

  指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  4、探究正方体的表面积计算方法。

  多媒体出示:棱长为5厘米的正方体的表面积是多少?

  学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6。

  四、巩固新知、拓展运用

  1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

  2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

  3、课件出示“聪明的你”,引导学生注意:

  (1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

  (2)计算时,关键是找准数据。

  学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

  4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。

  五、课堂小结

  通过学习,你有哪些收获?还有那些不懂的问题?

  数学面积的教学设计 9

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:

  能正确计算组合图形的面积。

  教学难点:

  能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备:

  A4纸基本图形作业练习

  教学过程:

  一、谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、给学生发礼物

  2、复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、教师总结:像这样由我们学过的一些基本图形组合而成的`图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、探索交流,解决问题

  1、出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的?)

  5、(展示四种已计算的分法)再对前四种进行分类

  (师:

  分割法:

  添补法:

  割补法:

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、出示练习,学生做在练习纸上。

  2、讲评完第一题后,操作第二题。

  四、学生畅谈收获

  通过这节课的学习,你在什么收获?

  数学面积的教学设计 10

  一、设计理念:

  新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”

  二、教学策略:

  1、创设生活情景,激励自主探索。

  2、创建探究空间,主动发现新知。

  3、自主总结规律,验证领悟新知。

  4、解决生活问题,深化所学新知。

  三、教材分析:

  《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  四、教学目的:

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  五、教学难点:

  理解和掌握求圆柱表面积的计算方法。

  六、教具准备:

  圆柱表面积展开模型电脑课件

  学具准备:

  易拉罐、白纸壳、剪子

  七、教学过程:

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的.铁皮?”

  (评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)

  (二)创设探究空间,主动发现新知

  1、认识圆柱的表面积

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢?(有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的!

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X2+长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  (三)自主总结规律,验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法:S=2πrh

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)

  (四)解决生活问题,深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  (评析:教师让学生合作学习,自主发现问题,交流解决。)

  课件出示例四,读题明题意,学生试做,全班交流。

  课件出示第16页第七题,学生试做,全班交流。

  讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。

  八、板书设计

  S表面积=S侧+2S底

  =2πrh+2πr

  数学面积的教学设计 11

  【教学内容】:

  义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

  【教学目标】:

  知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

  过程与方法:

  (1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

  (2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

  情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  【教学重点】:

  推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

  【教学难点】:

  引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

  【教具准备】:

  多媒体课件,圆片等。

  【教学方法】:自主探究法

  【教学过程】:

  一、以旧引新、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下三角形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

  二、动手实践、探索新知

  1、补充感知、理解意义:

  (1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

  (2)同学们再用手指一指自己带来的圆的面积。

  (3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

  2、比较猜测、探明方向:

  (1)提问:猜猜圆面积的大小与什么有关?

  (2)下面我们来动手验证一下是否与半径有关:

  ①你们想通过什么方法来推导圆的面积计算公式?

  ②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

  (3)活动要求:折一折手中的'圆片能折出什么图形?

  (4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

  ①圆和(近似的)长方形有什么关系?(形状变,面积相等)

  ②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

  (教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

  把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

  小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

  3、圆的面积计算公式的推导。

  小组合作讨论以下问题:

  a、拼成的近似长方形的面积和圆的面积有什么关系?

  b、长方形的长与圆的周长有什么关系?

  c、长方形的宽与圆的半径有什么关系?

  d、你能找出圆的面积计算方法吗?

  长方形的面积=长×宽,所以圆的面积=()×()=()

  学生在小组内积极讨论,探究、分析,并将结果汇报。

  长方形的长是圆周长的一半,长方形的宽是半径(r)

  因为长方形的面积=长×宽

  所以圆的面积=∏r×r=r2

  齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

  同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式。

  三、巩固运用、形成技能

  1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

  2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

  (1)课件出示例1

  (2)学生独立审题

  (3)教师板演解答过程。

  3、求下面圆的面积r=3md=5cm

  ①学生独立完成

  ②集体核对时,强调要先算平方再算乘法。

  4、判断题(课件出示)

  5、拓展练习:机动题

  小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少?

  四、课堂总结、深化认知:这节课,你有哪些收获?

  五、作业:练习十六2.4题。

  附:板书

  圆的面积

  长方形面积=长×宽

  ↓↓↓

  圆的面积=圆周长的一半×半径

  =∏r×r

  =∏r2

  例1:r:20÷2=10(m)

  S:3.14×102=314(m2)

  答:它的面积是314m2。

  数学面积的教学设计 12

  教学目标:

  1、探索比较大数大小的方法,体会比较较大数据的实际意义。

  2、通过学习,培养学生的小组合作能力和分析问题、解决问题的方法。

  教学重点:

  会比较多个大数的大小。

  教学难点:

  在小组合作中探索出比较大数大小的方法。

  教学过程:

  一、创设情境,解决问题。

  1、出示一幅中国地图,教师提问:你们知道我们回家有多少个省份吗?学生回答。

  教师总结:我国有23个省,5个自治区,4个直辖市,2个特别政区共34个省级行政区。(板书课题:国土面积)

  2、请同学们观察地图,你能看出我国的哪几个省或自治区的面积比较大吗?学生观察并学生回答。

  二、探究新知

  大数的比较:

  师:读了这些信息你知道了什么?你能将四川省、西藏自治区、和新疆。

  维吾尔自治区的面各从大到小排列吗?请同学们以小组为单位进行讨论,并将你们的`排列结果写在你们的小黑板上,一会请每组的组长来汇报你们组是用什么方法进行排列的。

  数学面积的教学设计 13

  教学内容:

  北师大版六年级数学下册圆柱的表面积。

  教学目的:

  1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。

  2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。

  3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。

  4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。

  教学准备:

  教师准备:长方体模型、多媒体课件。

  学生准备:圆柱形纸盒、剪刀。

  教学过程:

  一、创设情境,导入新课。教师出示长方体模型。

  提问:

  (1)长方体的表面积指什么?(六个面的面积之和)

  (2)如何计算长方体的表面积?(把六个面的面积加在一起)

  多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)

  如何计算圆柱的表面积?(把三个面的面积加在一起)

  教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需

  把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)

  (由长方体的表面积导入圆柱的表面积,知识的迁移自然,学生容易理解圆柱的表面积)

  二、自主探究,合作学习

  教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)

  教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)

  教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、平行四边形······)

  教师:你能想办法验证一下你的猜想吗?

  (一)圆柱的侧面展开

  1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。

  2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。

  ①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。

  ②圆柱的侧面展开后是平行四边形,我斜着把圆柱的侧面剪开得到一个平行四边形。

  ③圆柱的侧面展开后是长方形,因为我用一张长方形的纸卷成了一个圆柱。

  ④圆柱的侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。

  (动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)

  (二)圆柱侧面展开图与圆柱的关系

  1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。

  ①圆柱的底面周长

  ②圆柱的'高

  (三)圆柱的侧面积计算公式的推导

  1、教师:你能根据长方形或平行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生汇报展示,教师板书演示。

  圆柱的底面周长

  长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  平行四边形的面积=底×高

  圆柱的底面周长

  圆柱的侧面积=底面周长×高

  教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)

  S侧=Ch

  汇报交流,质疑问难,计算表面积。

  1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  30。

  教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)

  S侧=Ch=2×3、14×10×30=1884(平方厘米)

  2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(平方厘米)底面积:3.14×102=314(平方厘米)表面积:1884+314×2=2512(平方厘米)

  3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。

  教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?

  数学面积的教学设计 14

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的`合作精神和创新意识。

  教学重点:推导出圆的面积公式及其应用。

  教学难点:圆与转化后的图形的联系。

  教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。

  教学过程:

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、转化后的图形与原来的图形面积相等吗?(板书:等积)

  6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

  数学面积的教学设计 15

  一、设计思路

  (一)、教材分析

  《什么是面积》是三年级数学下册第五单元的起始课,在这之前学生已经认识了长方形、正方形等平面图形,也认识了正方体、长方体等立体图形,了解了它们的特征,也学习了计算长方形、正方形的周长,这一单元将让孩子们继续探究、了解什么是面积、面积单位、探究如何计算长方形和正方形的面积以及面积单位的换算,到五年级时,他们还将学习不规则图形面积的估计。因此这节课至关重要。

  (二)、设计理念

  这节课的设计我紧紧围绕新的教学理念,本着“以人为本”,充分体现学生的学习主体性,最大限度的给孩子创设轻松愉悦的学习氛围,给孩子搭建锻炼、探究、展示的平台,除了注重基础知识、基本技能的同时注重基本思想方法和基本技能的训练,培养学生的空间观念和探索精神,体会方法的多样性,感受合作学习的乐趣。

  (三)、教学目标

  1、结合具体情境,通过观察、操作等活动体验面积的含义,初步学会比较物体表面和封闭图形面积的大小。

  2、通过比较两个图形面积大小的过程,让学生体会解决问题策略的多样性,培养学生动手操作的能力,同时发展学生的空间观念。

  3、创设有目的的活动,让学生经历知识形成的过程,培养学生主动探索与团结协作的意识和能力,使学生体会数学与生活的密切联系,激发学生的学习兴趣。

  (四)、教学重点

  理解建构面积的含义,体验比较策略的多样性。

  (五)、教学难点

  理解面积含义,比较两个图形面积的大小。

  二、教学准备

  多媒体课件、学具袋(正方形与长方形每生各一个,剪刀、边长为1厘米的正方形小纸片、尺子)

  三、教学过程

  (一)、创设情境导入课题,认识什么是面积

  1、感知物体表面的大小

  (1)、出示人民币

  100元、10元、1元

  (2)、学生回答是什么?

  钱、人民币

  (3)、每张人民币都有几个面?两个面的大小怎样?(演示:摸人民币的表面)

  (4)、现在我们来做一个游戏“闭眼猜钱”

  ①、请同学们闭上眼睛,根据老师的描述,猜猜看这张人民币的面值是多少?

  ②、从上摸到下、从左摸到右,面最小的是?面最大的.是?不大也不小的是?

  (刚才通过闭眼猜钱的游戏我们了解了原来不同面值的人民币表面大小不同。)

  其实生活中有许许多多的面,比如说:书的封面等等,同学们仔细观察,找一找、摸一摸,说出更多的物体的面?

  这些都是物体的表面,这些面有大有小。

  (板书:物体的表面的大小)

  2、感知封闭图形的大小

  (1)、课件展示(判断哪些图形是封闭图形打√)

  (2)、找学生回答,并说出理由

  (3)、师再次点拨:我们把首尾相连或起点和终点重合的图形叫做封闭图形。

  (4)、提问:这些封闭图形的大小一样吗?(封闭图形也有大小)

  (5)、(板书:封闭图形就是它们的面积。)

  (6)、那么什么是面积呢?这节课我们学习的课题就是:什么是面积(板书:什么是面积)让学生齐读两遍课题。

  引导学生总结:物体的表面或封闭图形的大小就是它们的面积。

  3、师生游戏:“物体面积大压小”(老师先说一个面积,如数学书封面的面积,学生说出一个面积,要大于老师说的面积)

  (二)、探究:比较面积大小的方法

  1、刚才游戏时我们通过观察判断物体面积的大小,这种方法叫观察法。(板书:观察法)

  2、出示例题:那个图形的面积大?

  ①、这是什么图形?谁的面积大呢?

  ②、到底谁的面积大呢?我们要用事实说话。

  3、小组讨论、合作学习。

  拿出学具,寻找比较面积大小的方法。

  4、各组汇报比较方法。

  (板书:剪拼法、摆方块、画格子)

  5、课件展示比较方法,强调规格一致。

  说出自己喜欢的方法和理由,提炼出最优化的方法。

  (三)、按要求在方格纸中画图形

  1、明确题目要求(在方格纸中画图形,使它的面积等于7个方格的面积。

  2、拿出课前下发的方格纸,开始画。

  3、展示学生画的图形,进行点评。

  (四)、巩固练习

  1、说一说那个图形的面积最大,那个图形的面积最小(P50练一练第1题)。

  2、如图,用方砖铺满空地,那块空地用的方砖最少?(P50练一练第3题)。

  3、说一说每种颜色图形的面积等于几个方格那么大。(P50练一练第4题)。

  引申:第1、2组图形形状相同,面积相等;第3组图形形状不同、面积相等。

  4、数一数下面的图案分别等于多少个方格的面积?(P50练一练第5题)。

  (五)、课堂总结

  这节课你有什么收获?

  (六)、拓展延伸,引出新的课题

  1、课件展示两个学校的操场图,2、思考:比较两个学校操场面积的大小该用什么方法呢?(观察法、剪拼法、摆方块、画格子行吗?)该怎么办呢?下节课我们接着探究。

  最后老师送大家几句勉励的话语:学海无涯乐作舟,祝大家快乐学习、健康成长!

  (七)、板书设计

  什么是面积

  物体的表面或封闭图形的大小就是它们的面积

  观察法

  剪拼法

  摆方块

  画格子

  四、教学反思:

  这是一节校际之间的展示课,课堂上有很多闪光点,但也不乏有不足之处,现反思如下:

  成功之处:

  1、用的是外校的学生,因此课前我和孩子们进行了课前交流,为我本节课的教学做了很好的铺垫。

  2、用人民币导课,让学生闭眼猜钱、一下就激发了学生的学习兴趣,开课很成功。

  3、设计的找一找、说一说、游戏物体面积大压小、小组讨论、探究比较方法、画图形、谈课堂的收获等活动给学生提供了自主学习、合作学习、思考总结的机会,让学生积极的参与到课堂活动中来,整节课学生的学习热情高涨。

  4、练习题的设计有层次、有梯度,引导到位,有侧重。

  5、最后的拓展延伸拉近了两校之间的练习,巧妙的引出了新的探究课题。

  不足:

  1、准备的方格纸有些小,展示时后面的部分学生看的不是很清楚。

  2、小组合作学习时极个别学生没有积极的参与进去,个别组推选的组长有些紧张,汇报时不能流利、准确的表述本组的方法,老师及时给予引导。

  在今后的教育教学中我们要大胆的设计、组织学生进行小组合作学习,不要怕乱,让小组学习秩序化、高效化。

【数学面积的教学设计】相关文章:

小学数学梯形的面积教学设计11-25

小学数学“梯形面积”教学设计04-07

《面积与面积单位》教学设计06-01

面积的教学设计04-18

面积教学设计04-07

面积和面积单位教学设计08-22

数学《圆柱的表面积》教学设计优秀01-12

小学数学《圆柱的表面积》教学设计05-22

《面积的变化》教学设计07-29